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For many classical Gauss—Christoffel quadrature rules there does
not exist a method which guarantees a uniform level of accuracy
for the Gaussian quadrature weights at all quadrature nodes unless
the nodes are known exactly. More disturbing, some algebraic ex-
pressions for these weights exhibit an excessive sensitivity to even
the smallest perturbations in the node location. This sensitivity rap-
idly increases with high order quadrature rules. Current uses of
very high order quadratures are common with the advent of more
powerful computers, and a loss of accuracy in the weights has
become a problem and must be addressed. A simple but efficient
and general method for improving the accuracy of the computation
of the quadrature weights is proposed. It ensures a high level of
accuracy for these weights even though the nodes may carry a
significant large error. In addition, a highly efficient root-finding
iterative technique with superlinear converging rates for computing
the nodes is developed. It uses solely the quadrature polynomials
and their first derivatives. A comparison of this method with the
eigenvalue method of Golub and Welsh implemented in most stan-
dard software libraries is made. The proposed method outperforms
the latter from the point of view of both accuracy and efficiency.
The Legendre, Lobatto, Radau, Hermite, and Laguerre quadrature
rules are examined. © 1996 Academic Press, Inc.

1. INTRODUCTION

The advent of powerful computers has led over the last
three decades to extensive research into quadrature, a nu-
merical technique for evaluating integrals. Methods for
constructing efficient classical Gauss—Christoffel quadra-
ture rules and for computing the associated Christoffel
numbers have been known for some time (see, for instance,
Hildebrand [1], Gautschi [2], and for a comprehensive list
of references Davis and Rabinowitz [3]). To this day, re-
search activities related to this field and its applications
are still carried on in several important areas (Gautschi
[4], Milovanovic [5], Mastroianni and Monegato [6],
Gautschi and Li [7]). This paper is mainly concerned with
the computation of the Christoffel numbers or the quadra-
ture weights for high order classical Gauss—Christoffel
quadrature rules, where all the nodes are real and simple,
the quadrature polynomials satisfy a three-term recurrence
relation and a second-order differential equation. It is

known that the sensitivity of the weights to small perturba-
tions in the node location is not uniform over all the nodes.
Some algebraic expressions suggested in the literature for
computing the weights performed better than others. This
has been noticed in Gautschi [8], Lether [9], and more
recently in Nehrkorn [10] and Yakimiw [11]. The sensitivity
of the Gaussian weights to the accuracy of the nodes is
not a major problem for low order quadrature rules. How-
ever, for relatively high order quadrature rules, certain
expressions for the weights are so sensitive to even small
round-off errors that they are practically useless for com-
puting the weights. Very high order Legendre quadrature
rules are currently used in global atmospheric spectral
models of high resolution (Ritchie et al. [12]). Spectral
modellers are also well aware of the extreme sensitivity
to the node precision of certain analytic expressions for
computing the Gauss—Legendre quadrature weights near
the polar regions. In high resolution atmospheric spectral
models, a loss of accuracy in the weights significantly im-
pacts the quality of long time integrations of complex atmo-
spheric fluid flows and thus the sensitivity problem must
be dealt with. Hence in general, it is incorrect to presume
that nodes which are accurate to machine precision will
invariably produce weights of the same level of accuracy.
A similar although less severe accuracy problem is also
present in the eigenvalue method originally proposed by
Golub and Welsh [13], where the weights are calculated
from the first eigenvector component. This aspect will be
examined in some detail.

The main purpose of this paper is to describe a general
method for deriving in classical Gauss—Christoffel quadra-
ture rules algebraic expressions for the weights which are
more robust and largely independent of perturbations in
the node location. Furthermore, a simple but highly effi-
cient technqgiue for accurately computing the nodes is in-
cluded. This technique is essentially an extension of
Lether’s [9] suggestion and is based on the work of Ostrow-
ski [14] and Traub [15]. The general method is then applied
to various classical Gauss—Christoffel quadrature rules.
Because of its particular interest to atmospheric spectral
modellers, the Gauss—Legendre quadrature rule is exam-

406

0021-9991/96 $18.00
Copyright O 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.



CLASSICAL GAUSS-CHRISTOFFEL QUADRATURE RULES

ined in great detail. To assess the value of the method, a
comparison of the results with those obtained with the
eigenvalue method is carried out.

The organization of the paper is as follows. Section 2.1
briefly recalls the essentials of the eigenvalue method of
Golub and Welsh for the computation of the nodes and
the weights in classical Gauss—Christoffel quadrature rules.
It is followed, in Section 2.2, by a detailed description of a
root-finding iteration technique which exhibits superlinear
convergence rates. Then, a general rule for deriving robust
analytic expressions for the Gaussian weights is developed
in Section 2.3. An implementation of this technique in
the Gauss—Legendre quadrature rule appear in Section 3,
together with a thorough comparison with the eigenvalue
method in Section 3.3. In the Appendix, the proposed
method is applied to derive formulas for many other classi-
cal Gauss—Christoffel quadrature rules, in particular, for
Lobatto, Radau, Hermite, and Laguerre quadratures. In
the conclusion (Section 4), we summarize and comment
on the results.

2. CLASSICAL GAUSS-CHRISTOFFEL
QUADRATURE RULES

Hereafter, we refer to the classical Gauss—Christoffel
quadrature rules as those which share the following proper-
ties: (i) the quadrature nodes are all real and simple; (ii) the
quadrature polynomials satisfy a three-term recurrence re-
lation and obey a second-order differential equation. Two
alternate methods for the computation of the weights in
these quadrature rules are discussed in this paper. These
two methods are referred to as the eigenvalue method and
the root-finding method. Both techniques are described in
many classic textbooks on numerical integration (See
Davis and Rabinowitz [3], for instance.)

2.1. The Eigenvalue Method

The eigenvalue method which was originally proposed
by Golub and Welsh [13] is based on the diagonalization
of a symmetric tridiagonal Jacobi matrix generated from
athree-term recurrence relation satisfied by the quadrature
polynomials. An efficient procedure for diagonalizing the
Jacobian matrix makes use of the implicitly shifted QL
algorithm described in Wilkinson and Reinsch [16]. The
eigenvalues of the matrix are just the quadrature nodes
and the weights are simply related to the corresponding
eigenvectors. More precisely, given a set of orthogonal
polynomials {p;}/-, obeying a three-term recurrence re-
lation

xpi-1(x) = aipi(x) + bp;i-1(x) + a;-1pi2(x),
one can deduce a matrix relation

xP(x) = JP(x) + a,p,(1)E,
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where

P(x) = [po(x), p1(x), po(X), .y pr-1(X)]7,

and E [0, 0, 0, ..., 1]T. In this relation, J is the symmetric
tridiagonal Jacobi matrix whose elements are the Gram-—
Schmidt coefficients appearing in the three-term recur-
rence relation. Hence, if x; is a zero of p,,(x), there follows

X P(xi) = JP(xy),

and the eigenvalues of J are the requested quadrature
nodes. Making use of the Christoffel-Darboux identity
and the fact that p,(x;) = 0, the Gaussian weights are then
expressed in terms of the eigenvectors of the Jacobian
matrix. In particular, the weights can be computed from
the first component of the orthonormal eigenvectors of J.

The eigenvalue method of Golub and Welsh is a power-
ful and efficient technique specially suited for classical
Gauss—Christoffel quadrature rules of low order. Since the
three-term recurrence relations for the quadrature poly-
nomials are precisely known, the coefficients of the Jacobi
matrix can be evaluated to machine precision. If this is
not the case, the method may be subject to numerical
instabilities, thus multiple-precision arithmetic may be re-
quired in order to obtain meaningful results (Gautschi [8]).
The eigenvalue method of Golub and Welsh is imple-
mented in most standard numerical software libraries. For
example, we obtained a revised version of the original
Golub and Welsh subroutines from the Netlib software
library. Numerical results obtained with this code are used
for comparison in Section 3.3.

2.2. The Root-Finding Method

The root-finding method is an alternative for locating the
nodes in Gauss—Christoffel quadrature rules since these
nodes are the zeros of the associated quadrature polynomi-
als. The method essentially rests on the general theory
for the solution of equations and systems of equations
elaborated by respected mathematicians such as Cauchy,
Chebyshev, Euler, Fourier, Gauss, Lagrange, Laguerre,
and Newton. A comprehensive description of the theory
can be found in the textbooks of Ostrowski [14] and
Traub [15].

Using a first approximation of the zero location of a
function, the root-finding method aims at improving the
initial guess by means of an iterative procedure involving
the function itself and its derivatives. The whole technique
relies on the assumption that the successive iterates will
eventually converge to the exact location of the required
zero. This convergence is secured, provided the function
is sufficiently smooth in a certain neighborhood of the
zero (i.e., avoiding rapidly oscillating functions or singular
functions, the derivatives of which are either undefined or
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zero) and that the zero initial guess location is close enough
to its exact location. Amongst other reasons, the rate of
convergence of the method closely depends on the particu-
lar value of the first derivative of the iterative function
itself. The optimum theoretical convergence rate of an
iterative scheme is always reached in the very close vicinity
of the zero itself. A well-known example of a root-finding
iterative scheme is the second-order Newton—Raphson
rule. Near the zero of the function, the rate of convergence
of the scheme is quadratic. (For a formal discussion of
the convergence properties of the iterative functions, see
Ostrowski [14, Chapter 7].) In the Gauss—Legendre quad-
rature rule application in Section 3, we shall examine in
greater detail how the convergence properties surface and
can be improved.

Implementations of iterative schemes with superlinear
convergence rates are rather limited, owing to the apparent
complexity brought upon by the computation of higher
order derivatives of the function. For this reason, the
Newton—Raphson scheme is usually chosen for its simplic-
ity and its well-defined properties. Some exceptions of
higher order iterative schemes are reported, for example,
in the textbook of Davis and Rabinowitz [3]. In his original
paper, Lether [9] develops a fifth-order iterative function
for the Gauss—Legendre quadrature rule. The main merit
of this paper is to have successfully implemented the
fundamental and general theory of iterative methods
for the solution of equations to the construction of super-
linear converging iterative functions in classical Gauss—
Christoffel quadrature rules. Furthermore, Lether suggests
a straightforward substitution technique for eliminating
higher order derivatives owing to the fact that the quadra-
ture polynomials obey a second-order differential equa-
tion. Unfortunately, for high order iterative functions, the
author himself admits that the algebra in this technique
rapidly becomes prohibitive. In the following, we shall
indicate how to circumvent this difficulty. Using fundamen-
tal properties shared by the iterative functions, we shall
establish a general method for deriving high order iterative
functions involving at most the quadrature polynomials
and their first derivatives of the classical Gauss—Christoffel
quadrature rules.

In this paper we shall be concerned with a real single-
valued function f(x) of a real variable x which possesses
a certain number of continuous derivatives in the neighbor-
hood of a zero a. After Traub [15], recall the following
theorem.

THEOREM 2.2.1.  If the first derivative f'(x) of f(x) does
not vanish in an interval about a zero a of f(x) and if the
Ith derivative fO(x) is continuous in this interval, then f(x)
has an inverse g(x) and g (x) is continuous in the interval.

Assume o = x + Dx, where Dx is a relatively small
deviation from « and « is such that f(a) = 0 and
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f'(@) # 0. Furthermore, let fU)(x) = d/f(x)/dx’ represents
the jth derivative of f(x). Finally, let us define a function
fj such that

_9)
TGN

Notice that f; = 1. (Hereafter, we shall use f'(x) = fO(x)
to express the first derivative of f(x) and we shall drop the
explicit x dependency whenever this is convenient.) In
particular, we have

j=0,1,2, ... 1)

fi=fia—FAfi, =012, .. (2)

A Taylor series expansion of f(a)/f’'(x) about « in terms
of Dx gives

20 ]f—f!'(Dx)-f ~ 0. 3)

If f(x) meets the conditions of Theorem 2.2.1, then (3) can
be inverted,

%A
Dx == 3 = f *)
7= :

where f; is defined according to (1) and the coefficients A;
are given by the recurrence relation

e )
A= —DhA— AL, j=2,3,..
In particular,
A =1
A =1
As=3f3—f3
Ay =153 =10 f; + fi (6)

As=105f5—105f3 fs + 10f3 + 152 fu — fs
Aq = 94513 — 12603 f; + 280f 2 + 21012 f,
—21f2fs =35f3fa + fo-

(One can show that the sum of the coefficients in A; is
(j — 1)!. See Traub [15]) An alternative method for deduc-
ing A;in terms of the derivatives of fis through the identity

i \ Bi
A= oS G- (5
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where the sum is taken over all nonnegative integers f3;
satisfying the equations

2(1_1)181_] i

Finally, if we define B; = A; fi,
the recurrence relation

then the functions B; obey

B )
Bi=(—-1)B;., —foBj-1, j=2,3,..

It is important to realize that Eq. (4) essentially states that,
in principle, the correction Dx to x can be computed exactly
without any need to iterate. In effect, the ultimate level
of accuracy of Dx is limited by the machine precision.
Furthermore, the series (4) is more or less severely trun-
cated which further reduces its accuracy. An iteration pro-
cedure is thus required in order to determine the location
of the zero to the machine precision.

Let a kth-order iterative scheme function be defined as

k—lAj
{Dx} = — 21 b k=23 8)
p=

For instance, the iterative function {Dx}, = —f; leads to
nothing but the second-order Newton—Raphson iterative
scheme. If f(x) is a polynomial of order n and n > 1, the
third order iterative scheme defined according to (8) can
be shown to reduce to the cubically convergent Laguerre
scheme (Wilkinson [17], Fox and Mayers [18]). The func-
tion {Dx}; in (8) satisfies the recurrence relation

A
(Db = D = 5, o
={Dx}k,1—kf° (1 +{DxY_1), k=3.4,..

where {Dx},-; =d({Dx},-1)/dx. The general iterative
method using (4) can be related to many particular tech-
niques and has sometimes been referred to as the reversion
of the Taylor series expansion method (Wilkinson [17])
or the inverse interpolation method (Fox and Mayers [18],
Traub [15]). It needs to be mentioned here that Gerlach
[19] has recently described yet another method for con-
structing superlinear converging iterative functions. The
method is basically a variant of (4). Indeed, let X be defined
such as

= A/ .
= L ]71‘
25
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If X? < 1, relation (4) can be written as

fo
Dx=—-——
1-X
Hence, superlinear converging iterative functions can be
derived. In particular, for m = 2 in Gerlach’s convention,
we obtain

Dx=——"—F-— fo

it _f0<1+ fzfo)

which is equivalent to the third-order scheme according
to (8). However, for m = 3, applying his method to the
iterative function

Dx = —fo/[1 _%fzfo_%@fz f3> _]ZOfoJ

where fy, f>, f5 are defined according to (1). From this
expression it is clear that higher order iterative functions
are just a series expansion in terms of the iterative function
of the preceding order. However, it is possible to show
that this expression for Dx is numerically as good as the
fifth-order scheme but certainly no better than the sixth-
order iterative functions. Gerlach’s technique allows repro-
ducing superlinear converging iterative functions, how-
ever, at the cost of undesirable complexity. For higher
m values, the algebra becomes rather tedious and simply
impracticable unless the functions whose zeros are sought
are simple. This contrasts with the method based on (4).
Given relations (4) and (5), it is relatively straightforward
to construct iterative schemes with superlinear conver-
gence rates, provided one is willing to compute the higher
derivatives, as indicated in (6). This, however, does not
constitute an outstanding numerical problem, provided
f(x) satisfies a second-order differential equation. In-
deed, if

f'00) = ax(x) f'(x) + ba(x) f(x)

or, according to the adopted convention defined in (1),

fo=ax(x) + by(x) fo; (10)
then, the following relation holds:
fi=a(x)fioa +bi(x)fi-2, j=2,3,... (11)

There are obvious advantages in using (4) for computing
higher derivatives. Nevertheless, one may choose to ex-
press these derivatives in terms of ascending powers of f;,
as in Lether [9]. As we mentioned earlier, for high order
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iterative schemes, the method of direct substitution sug-
gested by Lether is cumbersome and prone to errors. (In
fact, the erroneous factor C in Lether’s formula has been
corrected in the next section.) In addition, the method is
simply unworkable in certain classical Gauss—Christoffel
quadrature rules (e.g., Radau quadrature rule).

The hereafter proposed simpler method makes use of
one of the fundamental intrinsic properties shared by the
iterative functions (4). According to Traub [15, Theorem
2.6, and Chap. 5), if the properties of a basic sequence are
known, then many properties of any iteration function may
be deduced. It is these properties that we exploit to derive
simple superlinear convergent schemes. In particular, using
the relation (5), it can easily be demonstrated that (4)
obeys the following property:

d(Dx) _

o 1. 12)
It is clear then that one can construct various equivalent
iterative functions with superlinear convergence rates, pro-
vided property (12) is satisfied. This freedom of choice will
be examined in greater detail in the Legendre and Lobatto
quadrature rules. For now, consider an expression of (4)
in terms of f; such that

> d; .
sz—zlj—"’ffo, (13)
=t

where the coefficients d; are some relatively simple func-
tions of x to be determined but are not functions of f(x)
or its derivatives. If (13) has to satisfy condition (12) in
some neighborhood of the nodes, then the recurrence rela-
tion for the coefficients d;,

d] =1

(14)
diyy=—d| tjard+j(j— 1byd;-y, j=1,2,..,
holds, assuming (11) is true. Applying this relation to vari-
ous classical quadrature polynomials allows us to easily
derive iterative schemes of any desired order with superlin-
ear convergence rates solely in terms of very simple func-
tions and of f;. A practical example of this method is
given in Section 3 for the Gauss—-Legendre quadrature
rule. Other results for the Lobatto, Radau, Hermite, and
Laguerre quadrature rules are reported in the Appendix.

2.3. Computation of Gaussian Quadrature Weights

The computation of the Gaussian weights calls upon
some analytic expressions involving the quadrature poly-
nomials which must be evaluated at the node locations.
The precision of these weights more or less depends on
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the accuracy of the quadrature nodes itself. In fact, this
dependency does create serious numerical problems in
many classical Gauss—Christoffel quadrature rules. The
eigenvalue method is not exempt from this peculiar prob-
lem. Indeed, in this approach, where the weight function
is related to the first component of the eigenvectors, a loss
of accuracy always occurs when the Gaussian weights are
relatively very small; besides, the small nodes themselves
lose accuracy in this method. The main reason for this
deficiency is that the accuracy of the nodes and the weights
directly depends on the accuracy of the initial Jacobi matrix
elements. Fortunately, these matrix elements are obtained
from exact recurrence relations and their level of precision
is determined according to the floating point arithmetic
used in their computation. In double precision, for in-
stance, the initial matrix elements are accurate to at least
15 significant digits. However, the eigenvalues (or the
nodes) and the corresponding eigenvectors (hence, the
weights) are only accurate to 15 decimal figures. Whatever
the resulting loss of accuracy, it is certainly not to the
benefit of using higher order quadratures to evaluate inte-
grals more precisely.

In the root-finding method, the accuracy problem of the
weights can be even more acute, depending on the analytic
expressions chosen for their computation. For very high
order quadrature rules, some expressions are so sensitive
to small round-off errors in the location of the nodes that
they produce completely erroneous values. Sensitivity to
small perturbations of the node locations has been ob-
served previously (Lether [9], Nehrkorn [10]) and is known
to exist in many classical Gauss—Christoffel quadrature
rules (Yakimiw [11]). Basically, Yakimiw showed that
large error in the weights due to small deviations in the
node location is bound to be generated when a singularity;
hence an abrupt variation of the weight functions happens
to be too close to the position of the nodes. A typical
example of such behavior is depicted in Fig. 1 for the
Gauss—Legendre quadrature of orders n = 6, where the
weight is

(15)

Such a formula is widely used in spectral atmospheric mod-
els (Ritchie et al. [12]) and can be derived from the
Christoffel-Darboux identity and the recurrence relation
for the ordinary Legendre polynomials. The heavy line in
Fig. 1 represents th Gauss—Legendre weight function w(x)
in terms of x in the half-interval [0, 1]. The Gaussian
weights are obtained at the nodes, the locations of which
are indicated by the long-dash vertical lines. The dotted
line plots the ordinary Legendre polynomials Py(x) to a
constant. One can see that a small deviation or error in
the position of the node closest to x = 1 will necessarily
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FOR N = 6
I
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FIG.1. Gauss-Legendre quadrature weight function (15) for n = 6. The heavy line represents the Gauss—Legendre weight function w(x) given
by (15) for n = 6. The long dash vertical lines indicate the x-position of the quadrature nodes (the zeros of the ordinary Legendre polynomials of
degree n = 6 whose behavior is represented by the dotted line). The weights and the nodes are symmetric with respect to x = 0 in the interval
[=1, 1]. Notice the extremely sharp variation of w(x) at the nodes closest to the end-point of the interval.

induce a large error in the weight at that location. Some
numerical results when using (15) for the computation
of the Gaussian weights are reported in column 3 of
Tables IIT and IV for the Gauss—Legendre quadrature rule
of order n = 92 and n = 384, respectively (These are typical
values which can actually be used in numerical climate
simulation and weather forecast spectral models.). The first
Gaussian weights in that column are accurate to 11 and 9
significant digits, respectively, even though the nodes used
to compute these weights are accurate to 16 significant
digits! The control values are given in column 2 of these
tables. The problem of accuracy for the weights to round-
off errors of the nodes closest to the end-points of the
interval increases so rapidly with n that expression (15)
fails at some point to produce the correct values, unless
multiple precision arithmetic is called upon.

An alternative expression for the Gauss—Legendre
weights is written in terms of the first derivative of the
quadrature polynomials.

2(1 — x?)

LX) (16)
[(1 = x*)P,(x)]?

w(x) =

The function is plotted in Fig. 2 and exhibits a less abrupt
variation in the vicinity of the nodes. This is even greater
for the nodes closest to the end-point.

Another well-known formula for the computation of
the weights (e.g., Eq. (19) in Lether [9]) depicts a similar
behavior in the vicinity of the nodes, as shown in Fig. 3.
In order to alleviate the sensitivity of the Gaussian weights
to the node location, simple expressions were derived
in (Yakimiw [11]). In what follows we propose a gen-
eral method for constructing analytic expressions for the
Gaussian weights that are more robust within a significantly
large neighborhood of the nodes.

First assume that f(x) is a quadrature polynomial
satisfying the condition stated in Theorem 2.2.1 (with
f'(x) # 0 in the neighborhood of the nodes) and obeys a
second-order differential such that (10) holds. Moreover,



412

E. YAKIMIW

1 1 L

6.0 c.1 0.2 0.3 0.4
X =

0.5
SINLAT

FIG. 2. Gauss—Legendre quadrature weight function (16) for n = 6. Same as in Fig. 1, except that the Gauss—Legendre weight function w(x)
given by (16) for n = 6. Notice the less abrupt variation of w(x) at the nodes closest to the end-point of the interval compared to the variation

shown in Fig. 1 in that neighborhood.

consider a weight function of the form

w(x) = 17)

__k
[dof" ()"
where k is some known constant and d, is a simple function
of x. (For the Gauss-Legendre quadrature, k = 2 and
dy = V1 — x?). Then, a valid expression for computing the
Gaussian weights is

=4 2
v« /[re g ]

where f, = f(x)/f'(x) as defined in (1) and d; is a simple
function of x. (Notice that the d; are different from those
given previously in (14)). The purpose of (18) is to be able
to modify the behavior of the weight function without
changing its value in the vicinity of the nodes. This happens
precisely when

(18)

dw(x) _

=0, (19)

This condition readily implies that the coefficients d; in
(18) must satisfy the recurrence relation

diy1=—dj + (j— Daxd; + j(j — 2)brd; 1,
i=0,1,2, ..,

(20)

where (10) has been used. By requesting that the weight
function obeys (19), it is very simple to derive analytic
expressions for computing the weights in the classical
Gauss—Christoffel quadrature rules that are practically in-
dependent of small errors which may be associated with
the nodes.

Retaining the first two terms in (18) leads to the results
reported in Yakimiw [11]. For nodes accurate to machine
precision, inclusion of these two terms is all that is needed
to compute the weight to their highest accuracy. If the
nodes carry a relatively large error, higher order terms
must be incorporated. In the next section, we implement
this method to construct weight functions for the Legendre
quadratures that include the first six terms. Analogous
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N = 6
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FIG. 3. Gauss-Legendre quadrature weight function for n = 6. Same as in Fig. 1, except that the Gauss—Legendre weight function w(x) given
by Eq. (19) in Lether [9], for n = 6. The behavior of the function w(x) in the neighborhood of the nodes is very similar to the behavior of w(x)

given by (16) and shown in Fig. 2.

results for other Gauss—Christoffel quadrature rules are
included in the Appendix. Finally, one must realize that
it is possible to construct classes of weight functions other
than (18) having similar properties to those derived in this
paper provided condition (19) is imposed.

3. APPLICATIONS

In this section we exploit the method proposed in the
previous section for deriving superlinear converging itera-
tive schemes which enable us to compute the nodes accu-
rately and efficiently. We then derive robust analytic ex-
pressions for the weights which satisfy condition (19). We
examine the Gauss—Legendre quadrature rule in great de-
tail in order to compare the results with the eigenvalue
method of Golub and Welsh.

3.1. Gauss—Legendre Quadrature
The Gauss-Legendre quadrature rule is defined by

the relation

[ F@ dv = 3 wie) Flan), e

i=1

where the «; are the zeros of the ordinary Legendre poly-
nomials P,(x) of degree n. Following the convention
adopted in the previous section, we have f(x) = P, (x) and

~ PP(x)
C Py(x)’

f i=0,1,2, ...

The ordinary Legendre polynomials obey the recurrence
relations and identities

Py(x)=1, Pi(x)=x,
(n+1DP,(x) = (2n + DxP,(x) — nP,_{(x), @)
c2P)(x) = n[P,-1(x) — xP,(x)],
b :i—)zc_gfoEaz + bafo,

where, for convenience, we have defined ¢> = 1 — x? and
n = n(n + 1). According to the adopted convention (1),
higher order derivatives of the ordinary Legendre polyno-



414
mials satisfy the relation

2(]— 1)x

NEEEL P

fi=

i=2.3, ...

e (23)

Using (23) to evaluate the derivatives in (6) and replacing
their values in (4), it is simple and straightforward to derive
superlinear converging iterative schemes for computing
the zeros of P,(x). To obtain instead a series expansion of
Dx solely in terms of f; as in (13), we proceed as follows.
In order to simplify the mathematical derivation, write (13)

in the equivalent form,
2 O
<25 (—) (24)
=y}

so that

o 8 2G-Dxy

T e2G-n T 205D 2

Translated in terms of &, recurrence relation (14) becomes

51 =1
(25)
81 = —c*8) +2x8,— j(j — Dnac*s, j=1,2,..,
where, for the ordinary Legendre polynomials, we have
used the fact that a, = 2x/c? and b, = —7/c?, according
to (22) with # = n(n + 1). Thus, the first five terms in

(24) are

s =1

& =2x

8 =2[2—B+n)?]=2[@B+n)x>— (1 +n)]
8y = 4x[2 — (6 + 51)c?] = 4x[(6 + 5n)x?

— (4 +5n)] 29)

85 = 4[4 — 2(15 + 167)c? + (30 + 437 + 67%)c*]
= 4[(30 + 437 + 67>)x* — 6(27 + 97 + 5)x>
+ (37 + 4) (27 + 1)].

It can be shown that the first four terms exactly reproduce
the results given in Lether [9] (after correcting for a missing
x in the expression of C in Lether).

It has been mentioned in Section 2.2 that it is possible
to construct series expansions for Dx other than (24), pro-
vided that the new expression obeys condition (12). For
instance, one such series expansion could be in terms of
the ratio P,(x)/P,-1(x). However, such a choice should be

E. YAKIMIW

avoided since the zero of P,_;(x) are increasingly closer
to the zeros of P,(x) near the end-points of the interval
[—1, 1] as n increases; hence, the stability properties of the
series Dx deteriorate significantly in these regions. On the
other hand, the following function is a good, if not a better,
candidate for producing a highly stable series expansion
for Dx with superlinear convergence rates:

CPn(x) CfO
= . 27
AP (x) — xP,(x) ¢ = xfo @
Defining cF(x) = ¢*P},(x) — xP,(x), we obtain
%6 (P,
pr--35(%) (9)

For (28) to satisfy (12), the coefficients §; must obey the
recurrence relation

6 =c
du=—esi - Lo -j(i-n T s )
i=1,2,..
In particular,
o =c,
6, =0,
0= — w, (30)

54 = i_.;C (ﬁcz + 2),

5 = % [37cH (27 + 1) + 263471 + 5) + 6], etc.

This leads to a simple but highly efficient iteration func-
tion Dx,

{Dx}¢ = —c?h {1 +%2[A +h <B + C%)}}

where h = fy/(c* — xfy),
A=—(nct+1), B=x(nct+2),
C =3nc*(2n + 1) + 2c¢*(4n + 5) + 6.

The same function F will be shown to be also a good
candidate for producing a robust analytic expression for
w(x). It is interesting to plot the function Dx given by (24)
in terms of x and to picture the effect of adding more
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FIG. 4. Gauss-Legendre quadrature nodes for n = 6. The heavy line represents the function {Dx}, given by (31) (Newton-Raphson rule) for
the Gauss-Legendre quadrature rule of order n = 6. The long dash vertical lines indicate the x-position of the quadrature nodes (the zeros of the
ordinary Legendre polynomials of degree n = 6 whose behavior is represented by the dotted line). The nodes are symmetric with respect to x =
0 in the interval [—1, 1]. Notice the behavior of Dx in the neighborhood of the nodes. Singularities and nodes of {Dx}, interlace. The nodes are
the attractors within the singularities. Any initial guess of the nodes within two singularities will eventually converge towards the node located

between these singularities.

terms in the series. In Fig. 4, we plot the second-order
iteration function,

P, (x)
P (x)

{Dx}, = —fo=— (31)

(Newton—Raphson rule). Using (2), we have

d{Dx}
Tdx 2= —(1 = f2/fo)
and d({Dx},)/dx|, = —1. Thus, (31) satisfies (12) exactly
at the node « only.
However, if we include the first five terms in (24), i.e.,
5.8, j
{Dx}s=—c*> 2 (%) , (32)

j=1]!

we get the graph shown in Fig. 5. From this graph, one
can see that the slope of (32) is practically constant and
equal to (—1) for a significant large interval around the
nodes. Hence, such a function leads to a superlinear con-
vergence scheme in this interval. A similar behavior can
be shown to hold for expression (28).

A robust analytic expression for the Gauss—Legendre
weights satisfying the condition (19) can be derived from
(18). In order to simplify the mathematics, write (18) as

0S8 (5T
w(x) =2 / [cf () > (—) ] : (33)
j=0J+ \C
where 8, = 1. According to (20), this implies that
81 = €*8 —x8—j(j—2)nc*s—y, j=0,1,2,.. (34)
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FIG.5. Gauss—Legendre quadrature nodes for n = 6. Same as in Fig. 4, except that the function {Dx}s given by (32) includes the first five terms.
Notice the linear behavior of Dx (with slope equal to —1) for a relatively large neighborhood around the nodes, leading to a superlinear converging
iterative scheme in that neighborhood.

(where ¢2 =1 — x?) and 7 = n(n + 1)). In particular, we If we use the function F defined in (27), instead of f;, we
find that can derive yet another valid and more robust expression
for the weight function:

60: 13

8 = —x, P;

1 X w(x)zZ/{F—l—%[n(n-l—l)-i-lz]F

8 =nc2+1, (35) ¢ (37)
_ — fﬁ 2

65 = x(nc* — 1), _31[”(”+1)+%]F_’21+...} )

8, =1—2nc® — nc*(3n + 2), ¢ ¢

= —x[1 — 6nc* + nc*(17n + . N . . .
% ¥ =6t +aci (17 + 6)], - ete, To visualize the effect of adding these terms in the weight

formula, we plot the function (33) for n = 6. In Fig. 6,

licitl : .
or explicitly, only the first two terms & and &, in (33) are retained.

Figure 7 plots (36), which includes the &, term.
w(x) = 262/{6-2});' —xP, + 1 [n(n +1) In these figures, the heavy line represents w(x) and the
2 (36) vertical lines indicate the position of the nodes. These
1P 2 results should be compared with those of Fig. 1. It is clear
+ —2} L4 } . from Fig. 7 that relatively large deviations or errors in the
clp, position of the nodes will not affect the value of the
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FIG. 6. Gauss-Legendre quadrature weight function for n = 6. Same as in Fig. 1, except that the heavy line represents the function w(x) given
by (33) for the Gauss—Legendre quadrature rule of order n = 6 when the first two terms are retained in the series (& and &,). Notice all the nodes
coincide with the minima of w(x), where its variation near these nodes is not large. Similar results were reported in Yakimiw [11].

Gaussian weights in the neighborhood of these nodes. We
applied the same method to other quadrature rules
and the results are summarized in the Appendix. Notice
also that second-order correction terms to the analytic
expressions of the weight functions in classical Gauss—
Christoffel quadrature rules have been briefly examined
in Yakimiw [22].

In the following section, we apply these formulas to
actually compute the nodes and the weights in the Gauss—
Legendre quadrature rule and we compare the results with
the ones obtained using the eigenvalue method of Golub
and Welsh.

3.2. Initial Guess and Actual Computation

In order to apply the root-finding technique described
in the preceding paragraph, an initial guess of the nodes
is needed. There exist quite accurate and efficient formulas
for computing approximate values of the zeros of the ordi-
nary Legendre polynomials. Let x, be the kth zero of
the ordinary Legendre polynomials P,(x). Then, a good

approximation of these zeros is given in Lether [9]

_ Jk ji—2
Xj = COS 1-

1 1/2
2tn+<
(2 +n+3)

+ O(n)

and

X = {1 e <39 - ﬁ” ) o)

),

where

o :<4k—1>ﬁ
Y \4n+2
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FIG. 7. Gauss-Legendre quadrature weight function for n = 6. Same as in Fig. 1, except that the weight function w(x) is given by (36) for the
Gauss—Legendre quadrature rule of order n = 6 when the first three terms (&, 8, and &) are retained in the series (33). Notice that linear (flat)
behavior of w(x) (with slope equal to 0) for a relatively large interval in the neighborhood of the nodes.

and j is the kth positive zero of the Bessel function of the
first kind Jo(x). A highly accurate approximation of j,
valid for all &, can be found in Branders et al. [20],

ap + a1[32 + (12/34 + a3,86
B+ b1B° + by + b3’

k=Bt
with 8 = (4k — 1)m/4 and

ap = 0.68289 48973 49453 E — 01

a; = 0.13142 08074 70708 E + 00

a, = 0.24598 82418 03681 E — 01

a; = 0.81300 5721543268 E — 03

by = 0.11683 72425 70470 E + 01

b, = 0.20099 11221 97811 E + 00
b; = 0.65040 45772 61471 E — 02

It can be shown that expression (38) gives a better approxi-
mation of the zeros closest to the end-point interval

[—1, 1], whereas expression (39) is superior in the middle
of the interval. An empirical rule has been designed for
selecting the formula which leads to the best approxima-
tion. The rule goes as follows: Use formula (38) whenever
k is such that

0.062
n

k= NINT{ (n +33)(n — 1.5)}; (40)

otherwise, take (39), where NINT means the nearest inte-
ger. For n = 5, for instance, formula (38) gives at least 14
significant correct digits for the first few nodes closest to
the end-points. In general for other values of k and for
high values of n, the above rule guarantees at least eight
accurate significant digits for the nodes. We do not recom-
mend using (39) for the nodes closest to the endpoints
since it gives a relatively poor initial guess for these nodes.
Lower order formulas analogous to (39) (which are used
in many applications) provide a poor initial guess for the
nodes. Lether [9] suggested using (38) only for the first
node nearest the end-point of the interval. Given the initial
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guesses of the nodes, first the ordinary Legendre polynomi-
als P,(x) are evaluated using the recurrence relation and
its first derivative according to (22). This computation is
relatively the most expensive operation of the entire
scheme. With these initial approximations of the nodes,
we use a fifth-order iterative scheme based on (24) and
(26) to determine the correction {Dx;}s to x;. Given the
initial guess suggested above and for quadrature order
sufficiently large, the nodes a; = x;, + {Dx;}s are then
computed to machine precision (16 significant digits in
double-precision arithmetic). For very low quadrature or-
ders (for n less than 5), an iteration may be required. In
all the applications, this one-iteration scheme was used
resulting in practically no significant loss in efficiency. Since
the Legendre polynomial and its first derivative need to
be evaluated at the new values, x;, + Dx, the following
procedure was adopted. In the iteration step, rather than
using the recurrence relation for the calculation of the
Legendre polynomial and its first derivatives, it is more
efficient to compute the required quantities by means of
a Taylor series in terms of Dx. According to the convention
adopted in Section 2.2 and using (23), evaluate fy(x;, +
Dx) = P,(xx + Dx)/(P,(x, + Dx), where

Paie +D¥) _ S hipy

’ ~ 7|
P, (x) j=0J (41)
P,Q(xk + Dx) _ 4 f}‘_Jr'lej'
P,’l(xk) j=0 I

Following this procedure ensures full precision for the
nodes for any quadrature order. Once the nodes have been
computed, apply (33), together with (35), to calculate the
Gaussian weights. Observe that the accuracy to which the
weights may be found is now limited only by the accuracy
with which the ordinary Legendre polynomial and its deriv-
ative may be evaluated. For this reason, we suggest using
a highly accurate formula for these computations near the
end-points of the interval of integration (is the colatitude)

P,(0) = % DSODS”_%WCOS[(H —2j)6] (42)
and
prg) = — L&, (1= 201N —2))

[j!(n = D'P

2211 o J (43)
sin[(n — 2/)6],

where [h/200means the integer value of n/2 and ¢, is the
Neumann number (g, = 1 and ¢,, = 2 for n > 0). At nodes
away from the end-points, for £k > INT(3.3 log.(n)) in the
(0, 1) interval region, we use the recurrence relation (22)
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which gives superior results and is computationally less
expensive than using the previous expressions (42) and
(43). Following this procedure, extensive numerical tests
were carried out in the Gauss—Legendre quadrature rule.
Then, the results were compared with those obtained with
the standard eigenvalue method of Golub and Welsh.
Hereafter follows a brief discussion of the findings.

3.3. Results and Comparisons

Numerical tests were performed in single and in double
precision arithmetic for Gauss—Legendre quadrature rules
of order ranging from 2 to 4000 using both techniques, the
eigenvalue method implemented in most software libraries
and the root-finding method developed in this paper. Two
criteria were examined: numerical accuracy and computa-
tional efficiency. For the eigenvalue method, single and
double precision versions of the code were obtained from
the Netlib software library. This code is based on the origi-
nal article of Golub and Welsh [13]. The diagonalization
of the Jacobian matrix makes use of the highly efficient
implicitly shifted QL-algorithm described in Wilkinson and
Reinsch [16]. We were able to optimize the code by a
factor of 27% mainly by taking into account the symmetry
properties obeyed by the Gauss-Legendre quadrature
nodes and weights. It is this optimized code that was used
in the tests. In the root-finding method, a first guess of
the Gauss—Legendre quadrature nodes was generated with
(38) and (39), according to the technique described in Sec-
tion 3.2. A fifth-order one-iteration scheme derived from
(24) and (26) produced the desired nodes. The ordinary
Legendre quadrature polynomials were initially evaluated
by recurrence (22), and subsequently by a Taylor series
expansion which included the first five terms, as indicated
in (41). The weight computation proceeded, using next an
analytic expression such as (33) including up to six terms
with the Legendre polynomials calculated according to
the method described in Section 3.2. Simpler, lower order
schemes were also tested and showed no significant gain
in efficiency. The tables published by Stroud and Secrest
[21] which report the nodes and the weights to 30 significant
digits served as control values.

Table I and Table II give the results for the node compu-
tation of the Gauss—Legendre quadrature rules of order
n = 92 and n = 384, respectively. Table III and Table
IV include the corresponding Gauss—Legendre quadrature
weights. These are typical results and we have reported in
these tables only the nodes and the weights in the interval
where their accuracy is most likely to differ in the two
methods of computation. In addition, these cases were
chosen because of their actual interest to climate and atmo-
spheric forecast modellers.

With regard to quadrature accuracy, it was found that,
whatever iterative scheme is used, the root-finding tech-



420

E. YAKIMIW

TABLE 1

Gauss-Legendre Quadrature Rule with n = 92 Nodes

Root # Control Root-Finding Eigenvalue
values for the nodes method method

l 0.9996620713 565245 54 0.9996620713 565245 2 0.9996620713 565250 7
2 0.9982199021 954501 53 0.9982199021 954502 0 0.9982199021 954507 6
3 0.9956270752 692151 69 0.9956270752 692151 2 0.9956270752 692157 9
4 0.9918860044 372534 78 0.9918860044 372535 0 0.9918860044 372533 9
5 0.9870009339 240120 40 0.9870009339 240120 0 0.9870009339 240126 7
6 0.9809774812 101540 27 0.9809774812 101540 5 0.9809774812 101543 0
7 0.9738225880 269419 34 0.9738225880 269418 8 0.9738225880 269419 9
8 0.9655445044 215959 01 0.9655445044 215958 9 0.9655445044 215965 6
9 0.9561527771 340069 46 0.9561527771 340069 3 0.9561527771 340068 1
10 0.9456582378 843629 56 0.9456582378 843629 8 0.9456582378 843628 7
11 0.9340729906 070954 98 0.9340729906 070954 8 0.9340729906 070954 8
12 0.9214103973 710760 54 0.9214103973 710761 1 0.9214103973 710758 8
13 0.9076850629 109250 43 0.9076850629 109249 9 0.9076850629 109252 1
14 0.8929128177 527762 04 0.8929128177 527762 0 0.8929128177 527768 7
15 0.8771106999 395696 69 0.8771106999 395696 9 0.8771106999 395696 9
30 0.5315106888 865978 78 0.5315106888 865979 2 0.5315106888 865966 9
31 0.5024417347 304565 13 0.5024417347 304565 0 0.5024417347 304559 5
32 0.4727932715 079918 35 0.4727932715 079918 3 0.4727932715 079909 4
33 0.4425994953 295942 31 0.4425994953 295942 5 0.4425994953 295936 4
34 0.4118952312 618817 08 0.4118952312 618817 1 0.4118952312 618815 4
35 0.3807158931 609505 69 0.3807158931 609505 6 0.3807158931 609501 1
36 0.3490974428 265281 83 0.3490974428 265281 6 0.3490974428 265279 9
37 0.3170763485 241381 07 0.3170763485 241381 3 0.3170763485 241384 1
38 0.2846895429 231169 43 0.2846895429 231169 3 0.2846895429 231171 0
39 0.2519743804 989961 80 0.2519743804 989961 8 0.2519743804 989961 8
40 0.2189685944 493801 52 0.2189685944 493801 6 0.2189685944 493803 5
41 0.1857102531 730124 50 0.1857102531 730124 6 0.1857102531 730127 1
42 0.1522377163 622269 96 0.1522377163 622269 9 0.1522377163 622271 9
43 0.1185895907 594259 29 0.1185895907 594259 3 0.1185895907 594260 4
44 0.8480468562 861401 26E-01 | 0.8480468562 861401 3E-01 | 0.8480468562 861470 TE-01
45 0.5092196799 334792 34E-01 | 0.5092196799 334792 3E-01 | 0.5092196799 334820 1E-01
46 0.1698051769 272823 43E-01 | 0.1698051769 272823 3E-01 | 0.1698051769 272897 5E-01

Note. Results for the Gauss—Legendre quadrature nodes computation in double precision floating point IEEE arithmetic. Only nodes close to
the end-points and in the middle of the interval of integration are reported as they are where accuracy is most likely to differ in the two methods
of computation. The control values in column 2 are from Stroud and Secrest [21] and are given to 18 significant digits. We report the computed
values with 17 significant digits. In double precision arithmetic these values should be correct to at most 16 significant digits. The root-finding method
produces nodes which are accurate to 16 significant digits, whereas the eigenvalue method gives in general 15 correct decimals and loses accuracy

for nodes that are very small.

nique ultimately produces nodes which are accurate to
machine precision up to the last digits (e.g., 16 significant
digits in double precision arithmetic), as shown in column
3 of Table I and Table II (In fact, we report the results to
17 digits). Column 2 of these tables contains the control
values of Stroud and Secrest [21] given here to 18 signifi-

cant digits. The accuracy of the nodes in the eigenvalue
method which are obtained from the diagonalization of a
tridiagonal Jacobi matrix depends on the accuracy of the
initial matrix elements of that matrix. Fortunately, these
matrix elements are known exactly (to machine precision)
since they are generated from a known three-term recur-
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TABLE 11

Gauss—-Legendre Quadrature Rule with n = 384 Nodes

Root-Finding
method

Eigenvalue
method

Root # Control
values for the nodes

1 0.99998044 11 726473 54

2 0.9998969471 378595 99

3 0.9997467408 113522 75

4 0.9995297988 558858 11

5 0.9992461316 671844 03

6 0.9988957572 063257 57

7 0.9984786985 384589 56

8 0.9979949833 727938 97

9 0.9974446439 389107 95
10 0.9968277169 440913 10
11 0.9961442435 551086 37
12 0.9953942693 885953 36
13 0.9945778445 047067 58
14 0.9936950234 020882 23
15 0.9927458650 133153 93
16 0.9917304327 004320 07
17 0.9906487942 504060 64
18 0.9895010218 704086 78
19 0.9882871921 828698 24
20 0.9870073862 202814 98
176 0.1344066496 809674 68
177 0.1263058061 156662 99
178 0.1181965306 016578 36
179 0.1100793644 996070 42
180 0.1019548496 969403 59
181 0.9382352857 167028 51E-01
182 0.8568594395 618718 40E-01
183 0.7754263910 102077 58E-01
184 0.6939415763 857370 51E-01
185 0.6124104354 682961 88E-01
186 0.5308384111 303817 30E-01
187 0.4492309489 737939 46E-01
188 0.3675934969 660982 12I5-01
189 0.2859315050 769284 9112-01
190 0.2042504249 141571 44E-01
191 0.1225557093 599553 90E-01
192 0.4085281220 676868 08LE-02

0.9999804411 726473 9
0.9998969471 378595 9
0.9997467408 113522 9
0.9995297988 558858 9
0.9992461316 671844 6
0.9988957572 063257 3
0.9984786985 384589 4
0.9979949833 727938 0
0.9974446439 389107 5
0.9968277169 440913 4
0.9961442435 551086 7
0.9953942693 885953 2
0.9945778445 047067 7
0.9936950234 020882 6
0.9927458650 133153 0
0.9917304327 004320 4
0.9906487942 504060 8
0.9895010218 704086 7
0.9882871921 828698 7
0.9870073862 202815 0

0.1344066496 809674 7
0.1263058061 156663 0
0.1181965306 016578 4
0.1100793644 996070 5
0.1019548496 969403 5
0.9382352857 167028 4E-01
0.8568594395 618718 613-01
0.7754263910 102077 2L-01
0.6939415763 857370 615-01
0.6124104354 682961 1L-01
0.5308384111 303817 612-01
0.4492309489 737939 713-01
0.3675934969 660981 5E-01
0.2859315050 769284 7B-01
0.2042504249 141571 113-01
0.1225557093 599553 8kE-01
0.4085281220 676867 91-02

0.9999804411 726473 9
0.9998969471 378601 5
0.9997467408 113522 9
0.9995297988 558852 2
0.9992461316 671845 7
0.9988957572 063257 3
0.9984786985 384590 5
0.9979949833 727934 6
0.9974446439 389110 8
0.9968277169 440912 2
0.9961442435 551083 3
0.9953942693 885953 2
0.9945778445 047066 5
0.9936950234 020880 4
0.9927458650 133147 4
0.9917304327 004317 1
0.9906487942 504064 2
0.9895010218 704095 6
0.9882871921 828705 3
0.9870073862 202819 5

0.1344066496 809668 6
0.1263058061 156657 8
0.1181965306 016575 7
0.1100793644 996069 5
0.1019548496 969408 0
0.9382352857 167065 9E-01
0.8568594395 618715 8E-01
0.7754263910 102013 3E-01
0.6939415763 857310 9E-01
0.6124104354 682893 8E-01
0.5308384111 303796 1E-01
0.4492309489 737930 7E-01
0.3675934969 660987 8E-01
0.2859315050 769311 1E-01
0.2042504249 141602 7E-01
0.1225557093 599569 4E-01
0.4085281220 677178 4E-02

Note. Same as in Table I but for Gauss—Legendre quadrature rule with 384 nodes. The increased loss of accuracy for the nodes computed with
the eigenvalue method shown in column 4 is consistent for the smallest nodes. No such loss is observed for the nodes computed with the root-

finding method, as shown in column 3.

rence relation. Consequently, let us say in double precision
arithmetic, the matrix elements are correct to at least 15
significant digits. However, it was found that the computed
eigenvalues of the matrix are correct to 15 decimal places

but not necessarily to 15 significant digits. This results in
a loss of accuracy for very small nodes as can be seen
to happen in column 4 of Table I and Table II. For the
Gauss—Legendre quadrature, the nodes in the middle of



New method described
in Section 3

Eigenvalue
method

0.8671851787 671409 8E-03
0.2017671366 262835 LE-02
0.3167535943 396090 4E-02

0.4313895331 861701 2E-02

0.5455308908 000862 TE-02
0.6590439334 214883 2E-02
0.7717971837 373541 TE-02
0.8836604056 467868 2E-02
0.9945045019 726079 TE-02
0.1104201592 263538 9E-01
0.1212625136 263771 6E-01
0.1319650070 571117 5E-01
0.1425152948 895389 9E-01
0.1529012082 579654 1E-01
0.1631107680 025594 9E-01

0.2876796607 210712 1E-01
0.2936435364 342281 8E-01
0.2992687279 231102 9E-01
0.3045487471 715834 6E-01
0.3094775042 804101 5E-01
0.3140493144 912215 3E-01
0.3182589047 432003 7TE-01
0.3221014197 549328 1E-01
0.3255724276 244004 2E-01
0.3286679249 406566 2E-01
0.3313843414 012936 8E-01
0.3337185439 303681 1E-01
0.3356678402 920371 1E-01
0.3372299821 957389 8E-01
0.3384031678 893358 7TE-01
0.3391860442 372261 1E-01
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TABLE III
Results for the Gauss—Legendre Quadrature Weight for n = 92
Root # Control method
values for the weights using Eqn.(15)

i 0.8671851787 671421 35E-03 0.8671851787 705189 E-03
2 0.2017671366 262838 59E-02 | 0.2017671366 258245 0E-02
3 0.3167535943 396097 87E-02 | 0.3167535943 399320 4E-02
4 0.4313895331 861700 47E-02 | 0.4313895331 860717 6E-02
5 0.5455308908 000870 98E-02 { 0.5455308908 002439 6E-02
6 0.6590439334 214895 22E-02 | 0.6590439334 214118 2E-02
7 0.7717971837 373568 50E-02 | 0.7717971837 374776 8E-02
8 0.8836604056 467877 3TE-02 | 0.8836604056 467956 7TE-02
9 0.9945045019 726082 04E-02 | 0.9945045019 726657 4E-02
10 0.1104201592 263594 22E-01 | 0.1104201592 263481 1E-01
11 0.1212625136 263771 05E-01 | 0.1212625136 263807 5E-01
12 0.1319650070 571113 80E-01 | 0.1319650070 571033 2E-01
13 0.1425152948 895392 52E-01 | 0.1425152948 895467 8E-01
14 0.1529012082 579650 50E-01 | 0.1529012082 579665 8E-01
15 0.1631107680 025595 80E-01 | 0.1631107680 025573 TE-01
30 0.2876796607 210717 58E-01 | 0.2876796607 210695 8E-01
31 0.2936435364 342281 26E-01 | 0.2936435364 342284 6E-01
32 0.2992687279 231107 33E-01 | 0.2992687279 231102 9E-01
33 0.3045487471 715832 09E-01 | 0.3045487471 715829 4E-01
34 0.3094775042 804103 16E-01 | 0.3094775042 804101 2E-01
35 0.3140493144 912217 7T9E-01 | 0.3140493144 912218 1E-01
36 0.3182589047 432008 58E-01 | 0.3182589047 432008 6E-01
37 0.3221014197 549332 95E-01 | 0.3221014197 549325 3E-01
38 0.3255724276 244004 52E-01 | 0.3255724276 244006 3E-01
39 0.3286679249 406566 03E-01 | 0.3286679249 406567 6E-01
40 0.3313843414 012938 18E-01 | 0.3313843414 012936 1E-01
41 0.3337185439 303681 03E-01 | 0.3337185439 303679 7E-01
42 0.3356678402 920367 63E-01 | 0.3356678402 920371 1E-01
43 0.3372299821 957387 16E-01 | 0.3372299821 957389 1E-01
44 0.3384031678 893360 18E-01 | 0.3384031678 893358 TE-01
45 0.3391860442 372254 94E-01 | 0.3391860442 372261 1E-01
46 0.3395777082 810234 T9E-01 | 0.3395777082 810229 3E-01

0.3395777082 810229 3E-01

0.8671851787 668861 9E-03
0.2017671366 262536 3E-02
0.3167535943 395855 8E-02
0.4313895331 862189 5E-02
0.5455308908 000444 TE-02
0.6590439334 215167 TE-02
0.7717971837 373972 8E-02
0.8836604056 468229 0E-02
0.9945045019 725968 TE-02
0.1104201592 263474 5E-01
0.1212625136 263809 1E-01
0.1319650070 571141 1E-01
0.1425152948 895304 5E-01
0.1529012082 579579 5E-01
0.1631107680 025767 7E-01

0.2876796607 210666 7E-01
0.2936435364 342238 1E-01
0.2992687279 231183 4E-01
0.3045487471 715776 O0E-01
0.3094775042 804073 4E-01
0.3140493144 912159 8E-01
0.3182589047 432039 1E-01
0.3221014197 549351 7E-01
0.3255724276 243967 4E-01
0.3286679249 406555 8E-01
0.3313843414 012911 1E-01
0.3337185439 303695 0E-01
0.3356678402 920363 5E-01
0.3372299821 957349 5E-01
0.3384031678 893254 TE-01
0.3391860442 372330 4E-01
0.3395777082 810132 9E-01

Note. Results for the Gauss—Legendre quadrature weight computation in double precision floating point IEEE arithmetic. The second column
contains the control values from Stroud and Secrest [21]. Only the weights which correspond to the nodes reported in Table I are given. The first
few weights are the ones which show the largest difference between various methods used for their computation. With nodes accurate to 16 significant
digits such as shown in Table I, the weight computation results using (15) are shown in column 3. The eigenvalue results for the weights are given
in column 5. The weights computed with the new expression described in Section 3 are reported in column 4. Provided enough correction terms
are kept in the expression, these weights are practically independent of large magnitude errors of the order of 1/n* in the nodes, where n is the

number of quadrature nodes.

the interval [—1, 1] are significantly smaller than 1, whereas
the values of the nodes nearest the end-points approach
1. For relatively large quadrature order, the difference may
reach a few orders of magnitude resulting in a significant
loss of accuracy for the nodes in the middle of the interval

region. Such a loss does not occur in the root-finding
method.

Concerning the weight accuracy, the eigenvalue method
again guarantees weights which are accurate to 15 decimal
places (in double precision arithmetic) but not necessarily
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TABLE IV

Results for the Gauss—Legendre Quadrature Weight for n = 384
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Control
values for the weights

method
using Eqn.(15)

New method described
in Section 3

Eigenvalue
method

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

0.5019410348 692173 7515-04
0.1168390665 730188 6215-03
0.1835749193 551260 44E-03
0.2503070890 844147 24E-03
0.3170242698 112706 30E-03
0.3837208020 912924 38E-03
0.4503919137 716877 61E-03
0.5170330453 491546 38E-03
0.5836397042 629966 77E-03
0.6502074240 969915 51E-03
0.7167317509 947397 54E-03
0.7832082385 905052 31E-03
0.8496324460 039079 10E-03
0.9159999370 632673 638E-03
0.9823062800 663751 21E-03
0.1048547047 793687 52E-02
0.1114717817 647312 65E-02
0.1180814171 855886 46E-02
0.1246831697 715436 93E-02
0.1312765987 850601 06E-02

0.8096447276 312187 23E-02
0.8105149720 727896 TOE-02
0.8113311079 909191 51E-02
0.8120930809 018394 51E-02
0.8128008399 376079 121-02
0.8134543378 495027 88E-02
0.8140535310 111774 80E-02
0.8145983794 215729 60E-02
0.8150888467 075881 62E-02
0.8155249001 265081 92E-02
0.8159065105 681901 67E-02
0.8162336525 570065 60E-02
0.8165063042 535459 03E-02
0.8167244474 560707 52E-02
0.8168880676 017327 98E-02
0.8169971537 675450 57E-02
0.8170516986 711110 73E-02

0.5019410345 265595512-04
0.1168390665 7736422E-03
0.1835749193 5198770E-03
0.2503070890 8916873E-03
0.3170242698 1897338E-03
0.3837208020 9531496E-03
0.4503919137 7272786L-03
0.5170330453 49468401-03
0.5836397042 6729027E-03
0.6502074240 9489622E-03
0.7167317509 9278257E-03
0.7832082385 9153669E-03
0.8496324460 0321777E-03
0.9159999370 6118388E-03
0.9823062800 6604854E-03
0.1048547047 7921493E-02
0.1114717817 6463886E-02
0.1180814171 8561737E-02
0.1246831697 7137758LE-02
0.1312765987 8504835E-02

0.8096447276 3121933E-02
0.8105149720 7278965E-02
0.8113311079 9091954E-02
0.8120930809 0183785E-02
0.8128008399 3760920102
0.8134543378 4950488E-02
0.8140535310 1117583E-02
0.8145983794 2157495E-02
0.8150888467 0758470L-02
0.8155249001 2650938E-02
0.8159065105 6818991E-02
0.8162336525 5700901L-02
0.8165063042 535478815-02
0.8167244474 560686513-02
0.8168880676 017328812-02
0.8169971537 6754595L-02
0.8170516986 T11116513-02

0.5019410348 692176 5-04
0.1168390665 730193 0E-03
0.1835749193 551263 6E-03
0.2503070890 844152 1E-03
0.3170242698 112708 8E-03
0.3837208020 912910 0E-03
0.4503919137 716872 4E-03
0.5170330453 491544 LE-03
0.5836397042 629978 0E-03
0.6502074240 969918 8E-03
0.7167317509 947394 5E-03
0.7832082385 905056 2E-03
0.8496324460 039092 7E-03
0.9159999370 632667 4E-03
0.9823062800 663738 0E-03
0.1048547047 793686 0E-02
0.1114717817 647309 3E-02
0.1180814171 855892 2E-02
0.1246831697 715438 5E-02
0.1312765987 850603 6E-02

0.8096447276 312191 5E-02
0.8105149720 727896 5E-02
0.8113311079 909195 4E-02
0.8120930809 018383 7E-02
0.8128008399 376088 6E-02
0.8134543378 495048 8E-02
0.8140535310 111758 3E-02
0.8145983794 215746 QE-02
0.8150888467 075848 7TE-02
0.8155249001 265090 3E-02
0.8159065105 681900 8E-02
0.8162336525 570091 9E-02
0.8165063042 535478 8E-02
0.8167244474 560689 9E-02
0.8168880676 017328 8E-02
0.8169971537 675459 51-02
0.8170516986 711114 8E-02

0.5019410348 723959 215-04
0.1168390665 724639 615-03
0.1835749193 557834 415-03
0.2503070890 847744 615-03
0.3170242698 107591 9E-03
0.3837208020 912185 2E-03
0.4503919137 705995 2E-03
0.5170330453 503842 2E-03
0.5836397042 625606 5E-03
0.6502074240 973900 0E-03
0.7167317509 944481 3E-03
0.7832082385 904226 7TE-03
0.8496324460 033415 9E-03
0.9159999370 633531 5E-03
0.9823062800 665730 8E-03
0.1048547047 793774 5E-02
0.1114717817 647248 0E-02
0.1180814171 855312 8E-02
0.1246831697 715960 2E-02
0.1312765987 850774 5E-02

0.8096447276 311681 5E-02
0.8105149720 727190 5E-02
0.8113311079 909695 0E-02
0.8120930809 018002 1E-02
0.8128008399 376123 3E-02
0.8134543378 495170 3E-02
0.8140535310 112523 3E-02
0.8145983794 216115 5E-02
0.8150888467 076473 2E-02
0.8155249001 264909 9E-02
0.8159065105 681706 5E-02
0.8162336525 570038 1E-02
0.8165063042 535799 7E-02
0.8167244474 561583 3[-02
0.8168880676 016775 4E-02
0.8169971537 676169 0E-02
0.8170516986 710861 5E-02

Note. Same as in Table III but for Gauss—-Legendre quadrature rule with n = 384 nodes. In addition to giving superior results for the weights,
the proposed method is more efficient than the eigenvalue method by a factor of at least 5.

to 15 significant digits. This is a real disadvantage because,
as the quadrature order gets larger, the Gauss—Legendre
quadrature weights get smaller resulting in a loss of a larger
number of significant digits. This result defeats, in a sense,
the whole purpose of using quadrature rules of very high

order to compute integrals more accurately. The problem
in addition is more severe for weights nearest the end-
points of the interval. This peculiar loss of accuracy re-
flected in the loss of significant digits for the Gauss—
Legendre weights can be seen in column 4 of Table III
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and Table IV. One may observe that the loss of accuracy
is larger for the first few weights nearest the end-points.
In the Gauss—Legendre quadrature rule, if x is the sine
of the latitude, then one can show that the weights are
proportional to the cosine of that latitude. Hence, the pecu-
liar behavior of the nodes and the weights in the regions
mentioned above. Using an analytical expression such as
the one given in (15) for computing the Gauss—-Legendre
weights leads to an even more serious problem of accuracy,
especially for small weights nearest the end-points. The
reason for such a problem is depicted in Fig. 1 for a quadra-
ture rule of very low order. Column 3 in Table III and
in Table IV reproduces the weights computed in double
precision arithmetic using (15) when the nodes are accurate
to 16 significant digits such as shown in column 3 of Table
I and of Table II. It can be seen that the accuracy of the
weights nearest the end-points is unacceptably low. In fact,
we have tested the consequences of using weights calcu-
lated from (15) in a high resolution atmospheric spectral
forecast model similar to the one described in Ritchie et al.
[12] and found a measurable deterioration in the five-day
forecast results.

Using nodes accurate to 16 significant digits (column
3 of Table I and Table II) and retaining only the first
two terms in (33) is sufficient to produce weights with
the accuracy shown in column 4 of Table III and of Table
IV. These results are general and clearly demonstrate
the superiority of the proposed technique compared to
the eigenvalue method whose results appear in column
5 of Table III and Table IV. For n = 92 in Table III,
the first weight nearest the end-point has 14 correct
significant digits when computed with (33), as shown in
column 4, compared to 12 in the eigenvalue method
(column 5). Whereas expression (15) guarantees only
11 significant digits for the weights (column 3). For a
Gauss-Legendre quadrature rule of order n = 384 given
in Table IV the differences in the weight accuracy get
even larger. The expression (33) gives 15 significant digits
for the first weight nearest the end-point, whereas the
eigenvalue method produces only 11 correct digits. The
weight computed with (15) further deteriorates and barely
gives nine correct significant digits.

There is another advantage of using analytic expressions
such as (33) or other analogous expressions such as (36).
It is that these expressions provide accurate weights even
though the nodes may carry a relatively large error. When
five or six terms are included in the analytic expression
(33) (i.e., terms proportional to §, and up to Js), then the
weights are not sensitive to perturbations in the nodes of
the order of 1/n* where n is the number of quadrature
nodes. This robustness of the weight expression in the
neighborhood of the nodes is due to the peculiar behavior
of the weight function such as the one depicted in Fig. 7.
Even a very small error in the nodes has a devastating result
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on the accuracy of the weights given by (15). Similarly, a
small error in the initial elements of the Jacobi matrix has
a direct impact on the accuracy of the weights generated
in the eigenvalue method. Similar tests were also per-
formed in single precision arithmetic and small perturba-
tions in the nodes had an analogous impact on the
weight precision.

As far as the efficiency of the nodes and of the weight
computation is concerned, one must admit that the meth-
ods examined in this paper are all very efficient. However,
it was found that the root-finding method implemented
was at least five times more efficient than the optimized
version of the Netlib eigenvalue method, as described pre-
viously. This is clear, especially for very high quadrature
order. The results are shown in Table V for various Gauss—
Legendre quadrature rules of order up to 8000. It is seen
that, for very high order quadrature rules, the efficiency
of the eigenvalue method deteriorates markedly from the
root-finding method. The timings reported in column 2 of
Table V are for the comptutation of the nodes and of the
weights. The iterative scheme for computing the nodes
included up to five terms in (24) with one iteration where
the new values for the Legendre polynomials was com-
puted with a Taylor series expansion with five terms. For
the weight computation, we used an expression such as
(33) with six terms included in the series. The computing
cost for adding these higher order terms in the computation
of the nodes and of the weights is minimal compared to
the cost of evaluating the ordinary Legendre polynomials
by recursion (22) or by using expressions such as (42) and
(43). For particular applications, one can easily tailor an
iteration scheme and an analytic weight function that com-

TABLE V

CPU Time (in seconds) for Gauss—-Legendre Quadrature

CPU time (in seconds)
Total number

of nodes Root-finding method Eigenvalue method

50 0.01 0.01

100 0.01 0.03
200 0.03 0.10
500 0.12 0.58
1000 0.42 2.26
2000 1.59 8.94
4000 6.19 34.68
6000 13.80 76.65
8000 24.41 133.62

Note. Comparison of the computing cost (in seconds) for the evaluation
of Gauss-Legendre quadrature nodes and weights of order n following
the proposed method in this paper and the Golub—Welsh eigenvalue
method. The computation was carried in double precision floating point
IEEE arithmetic using a SGI Power Challenge computer. The timing for
the eigenvalue method takes into account a code optimization mentioned
in Section 3.3.
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bine all the qualities of accuracy and efficiency, as well
as simplicity.

The method developed in this paper was also applied
and tested for the classical Gauss—Christoffel quadrature
rules described in the Appendix. Very similar conclusions
were reached concerning the accuracy and the efficiency
of this method. Some results were also reported in Ya-
kimiw [11].

4. CONCLUSION

A simple, highly accurate and efficient method for com-
puting the nodes and the weights in the classical Gauss—
Christoffel quadrature rules has been presented. The com-
putation relies on using a root-finding technique for the
nodes and analytic expressions for the weights. The root-
finding technique itself is based on iterative schemes exhib-
iting superlinear convergence rates and involving solely
the quadrature polynomials and their first derivatives. Con-
trary to previous analytic expressions widely used for com-
puting the quadrature weights, the new expressions are
more robust, resulting in a significant improvement in accu-
racy for the weights, even though the nodes may carry a
relatively large error. These new expressions need only
the accurate evaluation of the quadrature polynomials and
their first derivatives.

Extensive tests were performed in single and double
precision IEEE arithmetic in order to assess the method
in terms of accuracy and efficiency. The results were com-
pared with the eigenvalue method proposed in 1969 by
Golub and Welsh [13] and implemented in most software
libraries. We obtained both single and double versions of
the Golub—Welsh code from the Netlib software library.
The code was further optimized by a factor of 27% in the
case of the Gauss—Legendre quadrature rule mainly by
taking into account the symmetry properties obeyed by
the nodes and the weights.

In terms of accuracy for the nodes and, most important,
for the weights, the tests indicate that the method devel-
oped in this paper gives consistently superior results, com-
pared to the eigenvalue method. This is especially true for
very high order quadrature rules. This can be seen, for
instance, in Table I and Table II for the nodes and in Table
IIT and Table IV for the weights. In the eigenvalue method
with double precision arithmetic, the resulting eigenvalues,
and thus the nodes, are given with 15 correct decimal places
but not necessarily with 15 accurate significant digits. This
is true, provided the initial elements of the Jacobi matrix
are known to at least 15 significant digits. The same rule
applies for the quadrature weights. This loss of accuracy in
the nodes and in the weights increases with the quadrature
order since the nodes and the weights become increasingly
small in certain regions of the interval of integration. This
is a real disadvantage since it defeats the whole purpose
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of using higher order quadrature rules to compute integrals
more accurately.

In addition to giving superior results, the proposed
method turns out to be more efficient than the eigen-
value method by a factor of at least 5. This can be seen in
Table V for the Gauss—-Legendre quadrature rule, espe-
cially for very high order quadrature rules. For these rea-
sons, for its accuracy, its efficiency and its simplicity, the
method developed for the Gauss-Legendre quadrature
rule has been implemented in the Canadian climate spec-
tral model and the operational high resolution atmospheric
spectral forecast model. A version of the Gauss—Legendre
quadrature code is available on request from the author
at eyakimiw@cmc.doe.ca.

APPENDIX A: EFFICIENT AND ACCURATE FORMULAS
FOR COMPUTING THE NODES AND THE WEIGHTS
IN CLASSICAL GAUSS-CHRISTOFFEL
QUADRATURE RULES

The general method described in this paper is applied
to various Gauss—Christoffel quadrature rules, where the
quadrature polynomials are known to obey a second-order
differential equation. Superlinear converging iterative
schemes for computing the nodes are given as well as high
order analytic expressions for the Gaussian weights which
are practically independent of the rounding-error in the
nodes and involve solely the quadrature polynomials and
their first derivatives. The following rules are examined,
Lobatto, Radau, Hermite, and Laguerre. Similar formulas
for other related Gauss—Christoffel quadrature rules can
easily be derived.

A.1l. Gauss—Lobatto Quadrature Rule

The Gauss—Lobatto quadrature rule which includes the
two end-points of the interval of integration is given as

[, PGy = o s R + FOL + S i) P,

i=2

where the quadrature nodes x; are the zeros of the first
derivative P;_i(x) of the ordinary Legendre polynomials
of degree n — 1. For the Lobatto quadrature polynomials,
one can use either P, (x) or (1 — x?)P;,_1(x) whose zeros
include the end-points. In practice, the weights at the end-
points are known exactly and need not to be computed
through analytic expressions. However, both choices are
examined as possible candidates for deriving high order
iterative schemes and robust analytical expressions for
the weights.

A.1.1. Using P, i(x) in Gauss—Lobatto Quadrature
Rule. Let f(x) = P,_; so that f'(x) = PZ;(x). Then, ac-
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cording to the convention adopted in Section 2.2,

-1
fo= Iw,
n-1 (A.1.1)

4x
h=—=+

2—n
B ——fo=a+ byfo,

where ¢> = 1 — x> and n = n(n — 1). Higher order deriva-
tives of f(x) obey the following relations:

f—— 2 f, 1+’(]—)f, s J=23,... (A12)
Let us rewrite (13) as
= O
2]— <ﬁ> (A.1.3)
Since
4x 2—n
a, = ?v b2 - C2 B
and
__9 % L 2(-Dxg
dj= c2G-1° dj = c2G-1 + 2 R

the substitution of d; and d; in (14) leads to the following
recurrence relation for the coefficients §; in (A.1.3):

51 =1
S = —c%0 +2(j + 1)x5;
" ¥ 2+ X (A14)
+j(j = D2~ )
i=1,2,..
In particular, we have

51 =1
52 =4x
8 =2(12x% — nc?) (A.15)

6, = 4x(48x% — 11nc?)
= 4[480x* — 7ic2(203x2 + 1 — 67ic2)],

where ¢2 =1 —x?and 7 = n(n — 1).
Similarly, the general Gaussian weight formula (18) is

written as
w(x) =2n / [czf’ > i{ (%)l]z (A.1.6)
j:0] . \C
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From (20), the recurrence relation holds for §; in (A.1.6):
60 =1
81 = =¢8] +2(j — 1)xo;

+j(j—2)2 - n)c*
j=0,1,2,...

(A.1.7)

The first terms in (A.1.6) are

S =1
o= —2x
8 = 7ic? (A.1.8)
85 = 4nxc?

8, = e 24 — (22 + 37)¢Y

85 = 2nxc*[96 — (78 + 31n)c?,

where again we have defined ¢> =1 — x2and7n = n(n — 1).

A.1.2. Using ¢*P},_(x) in Gauss—Lobatto Quadrature
Rule. If we choose
f(x) = Py (x) (A.19)

as the Gauss—Lobatto quadrature polynomials, where
¢ =1 — x?, then

f'(x) = =P, 1(x), (A.1.10)
where 7 = n(n — 1) and
n
Hence, a; = 0 and b, = —7/c% In general, the higher

derivatives in this case are

3) -7

2(j —2)x = 2)(j —
fi= (JC2 ) ff—1+(] )(JC2 fias
(A.1.12)
j=2,3,..
From (13), recall that
) d]
Dx=->-f} (A.1.13)
j-1J*
Then (14) becomes
d] =1
_ (A.1.14)
C g n .
d/ur]:_dj_](]_l)?d/f], ]:1,2,
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In particular, the first five d;’s in (A.1.13) are

dl =1
d2 =0
_ _2n
&= "2 (A.1.15)
4nx
d4 ?
ds = — 4n(1+3x — 6nc?),

where ¢> =1 — x? and 7 = n(n — 1). One can see that
the resulting expression for Dx in (A.1.13) with the coeffi-
cients given by (A.1.15) is somehow simpler than those in
(A.1.5) and, thus, is easier to compute. Indeed, after some
simplifications, the expression leads to a rapidly converg-

ing series:
c’F C’F? x
=—11- 1+-=F
n { 3n [ 2n

)

where F = P} /P, ;,c>=1—x%and n = n(n — 1).
Using the same polynomials defined in (A.1.9) in the
weight formula (18), we have

Dx

(A.1.16)

(1 + 3x% — 6nc2)
10n2

w(x) =271 / [—ﬁP,,li ]‘.l—{fg]z, (A117)

where
d() =1
~ (A.1.18)
, PN n
d]url:_dj_](]_Z)?djfl, ]:0,1,2,...,
so that
d() =1
d1 =0
n
d, = =
(A.1.19)
2nx
d3 = - ?
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where ¢ =1 — x> and nn = n(n — 1), as before. Specifically,
we obtain the expression for the Gauss—Lobatto weight
function,

w(x) = 2ﬁ/{ﬁp,,_1 [1 +

(1 + 3x% — gncz)
12n?

2F2 1
+2F
[2 3n

(A.1.20)

x(1 +x*—%nc

e

where F = P),_/P,,c*=1—x%*andn = n(n — 1).

+

A.2. Gauss—Radau Quadrature Rule

For the Gauss—Radau quadrature rule, we have
1 2 n-1
L F(x) dx = = F(=1) + 3, w(x) Fx),
i=1

where the Radau quadrature polynomials are defined as

P,_,+P,
1+x

f= (A2.1)

Here, P, and P, _; are the ordinary Legendre polynomials
defined in (22). One can show that

f' = nP,_, — nP, + (x — 1)f (A22)

and that the higher derivatives of f(x) obey the relation

(2] - 1)x LU= 1 —n,
Bt Z I (A2.3)

fi=

i=2.3, ..,

according to the convention defined in Section 2.2. In par-
ticular, we have

3x—1 1-n?
= +
f2 C2 Cz

fo=ax+ b2 fs. (A24)

Given the expression (A.2.3) for the higher derivatives, it
is relatively simple to use (4) and (6) to derive superlinear
converging iterative schemes for Dx. Instead, use (13)
and write

(A2.5)

e 3i(E)
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where ¢ = 1 — x2 From (14), we obtain the following
relations for the s in (A.2.5).

51 =1
S =—c28 +[(j+2)x—j]6
j+1 J [(] ) ]] J (A26)
+j( = DA = n*)e?d
i=12,..
In particular,
51 =1
8= (3x—1)
_ 2 _ 9,22
& = (13x*—10x + 1) — 2n*c (A2.7)

8y = (73x> + 93x? + 27x + 1) — 4n*c*(8x — 3)
85 = (501x* 4+ 572x3 — 258x2 — 408x — 19)
—4n%c?[(21x — 13)(5x — 1) — 6n%c?.

For the Radau weight formula, we write (18) as

W(’“):“/ =3 20 Y] @

where
6(]:1
8= —c?0 +3[(2j—3)x— (2j — 15
j+1 J 2[( ] ) ( ] )] j (A29)
+i(—2)A = n*)c*6
i=0,1,2, ...

In particular, the first five terms in w(x) of (A.2.8) are

50:1

1-3x
2

& =1(x+ 1)+ n3?

3]:

5 = ("+T1)2 (5x (A.2.10)

2.2
—7)+%(5x—3)

BN )P _
8y =" (1lx — 13)(3x = 5)

22

+2C [(Sx - 7(Bx —1) — 6n%?]

8s=—c28, +3(5x — 7)8, + 8(1 — n?)c?s;,

E. YAKIMIW

where

5= @ (11x2 — 18x + 3) — n%(30x® — 39x2 — 8x
+ 13 — 12n%c*x)
and ¢> = 1 — x?. Using the properties of the ordinary

Legendre polynomials, the first three terms in w(x) give
the expression

w(x) =16(1 — x)/{(Zn -HP,..—(C2Cn+1)P,

N [(Zn + 1{4(2;1 -1)

+2(11— )]f* }

where fand f' are given according to (A.2.1) and (A.2.2).

(A2.11)

A.3. Gauss—Hermite Quadrature Rule

The Gauss—Hermite quadrature rule is defined as
fw e’sz(x) dx =, w(x;)F(x;).
- i=1

The quadrature polynomials are the Hermite polynomials
H,(x) which obey the relations:

Ho(x) = 1, Hl(x) -

Hn+1(x) = ZXHM(X) - 2an,1(x) (A31)
H)(x) =2nH,_(x)

HP(x) = 2xH(x) — 2nH,(x).

Using the convention adopted in Section 2.2, we have

f=H, (A3.2)
o =2x = 2nf,
=a + b2f0 (A33)
and, in general,
f=2xfia—2n—j+2)fin j=2,3,.. (A3.4)

Using (A.3.3), the recurrence relation (14) becomes
d] =1
df+1 = _d; + 2jxd,- - 2](] - 1)I’ld/'_1
i=12,..,

(A3.5)
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and the first five terms of (13), for the Gauss—Hermite

quadrature rule, are
d] =1
d2 2x

dy = 2[4x% — (2n + 1)]
dy=4x(12x%> = 12n —17)
ds = 4[96x* — 4x2(23 + 36n) + 24n(n + 1) + 7].

(A3.6)

Similarly, for the Hermite weight formula, we get from (20)
do =1
dj+1 = _d/, + 2(] -
j=0,1,2,..,

Dxd; = 2j(j — ndyr. (A3)

where the d;’s are the coefficients in the series (18). In
particular, the first five terms for the Hermite weight func-
tion (18) are

dy=1

d, = —2x
d,=2(n+1)
d;=4x(n+1)=—dd,

(A3.8)
dy=4(n+1)(4x>-3n—-1)

= _2d2(1 + 3”) + 4xd3
=8x(n+ 1)(12x>—17n —17)
= 2[x(3ds — 4d>) — 2ds(1 + 4n)]

and the constant k is equal to 2" *'n! /7. More specifically,
the Gauss—Hermite formula for the weights has the form

HZ
_ o+l _ n+1 n
w(x) =2""n! \/7_7/{Hn+1 o Ho
_(n+Dx H;
6n> Hj., (A3.9)

(n+DH@x*-3n-1) H;
487/[3 Hz,l

2

. } _

A.4. Gauss—Laguerre Quadrature Rule

The Gauss—Laguerre quadrature rule is defined as

Js e *F(x) dx = i w(x;)F(x;),

i=1
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where the quadrature nodes x; are the zeros of the Laguerre

polynomials L,(x) satisfying the relations
Lo(x)=1, Li(x)=x
(m+1)L,qx)=2n+1—-x)L,(x) —nL,1(x) (A4.1)
xL;(x) =nL,(x) — nL,_;(x)
xLiP(x) = (x = ) Li(x) — nLy(x).

Using the convention adopted in Section 2.2, we have

f=L, (A42)
x—1 n
T [
=a, + bzf(], (A43)
and, in general,
_xt+t1l—-j, ~nt+t2-j
i
j=2,3, ..
We also write (13) in the form
z 6
> x [@} (A4.5)
j=1 -

Using (A.4.3), the recurrence relation (14) translates into
51 =1
G =—x8j +(jx —1)§—j(j —-
i=1,2,..

1)nxd; 4 (A.4.6)

In particular, the first five coefficients in the series
(A.4.5) are

51 =1
SH=x—-1
8 =2x*-2x(n+2)+1
84 =6x>—6x’2n+3)+x(10n+11) -1  (A47)
85 = 24x* — 24x3(3n + 4)

+ 2x%(12n* + 62n + 49)

—2x(16n +13) + 1.

The Laguerre weight formula is given by
= O
w(x) =1/[ E f(’} (A48)
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and, using (20), where d,- = 5, \/)_C and (A.4.3), we obtain  edges the assistance of Steve Thomas and Vivian Lee in the preparation
the general relation for the §; in (A.4.8),

50:)6

2j -3

Gjo1 = —06; [(f_ 1) —7]5

7

.. n .
—1(1—2);6;71, j=0,1,2, ...

In particular,

%

o1

)

S

Oy =

0s

=X

=%(1—2x)

1(1

=—|—+2n+

2<2x 2n 1)

1(1 n

= (-=-=+2n+1

2<4x2 x ]
_1_L+(1—2n)_[3+4n(3n+4)]
414x3 x? X
+42n +1)
_1[ 1 (A-12n)  (68n®+36n +15)
4 [ 8x* 4x3 2x?

2
(68 +i4n+19)+12(2”+1)]‘

(A4.9)

(A.4.10)

Including the first three terms in w(x) gives the Gauss—
Laguerre weight formula

w(x) = x/{xL,’1 +%(1 -2x)L,

1< 1>L% }2
+ 2n+1+=— 2L+,
4 2x L
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