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For many classical Gauss–Christoffel quadrature rules there does
not exist a method which guarantees a uniform level of accuracy
for the Gaussian quadrature weights at all quadrature nodes unless
the nodes are known exactly. More disturbing, some algebraic ex-
pressions for these weights exhibit an excessive sensitivity to even
the smallest perturbations in the node location. This sensitivity rap-
idly increases with high order quadrature rules. Current uses of
very high order quadratures are common with the advent of more
powerful computers, and a loss of accuracy in the weights has
become a problem and must be addressed. A simple but efficient
and general method for improving the accuracy of the computation
of the quadrature weights is proposed. It ensures a high level of
accuracy for these weights even though the nodes may carry a
significant large error. In addition, a highly efficient root-finding
iterative technique with superlinear converging rates for computing
the nodes is developed. It uses solely the quadrature polynomials
and their first derivatives. A comparison of this method with the
eigenvalue method of Golub and Welsh implemented in most stan-
dard software libraries is made. The proposed method outperforms
the latter from the point of view of both accuracy and efficiency.
The Legendre, Lobatto, Radau, Hermite, and Laguerre quadrature
rules are examined. Q 1996 Academic Press, Inc.

1. INTRODUCTION

The advent of powerful computers has led over the last
three decades to extensive research into quadrature, a nu-
merical technique for evaluating integrals. Methods for
constructing efficient classical Gauss–Christoffel quadra-
ture rules and for computing the associated Christoffel
numbers have been known for some time (see, for instance,
Hildebrand [1], Gautschi [2], and for a comprehensive list
of references Davis and Rabinowitz [3]). To this day, re-
search activities related to this field and its applications
are still carried on in several important areas (Gautschi
[4], Milovanovic [5], Mastroianni and Monegato [6],
Gautschi and Li [7]). This paper is mainly concerned with
the computation of the Christoffel numbers or the quadra-
ture weights for high order classical Gauss–Christoffel
quadrature rules, where all the nodes are real and simple,
the quadrature polynomials satisfy a three-term recurrence
relation and a second-order differential equation. It is

known that the sensitivity of the weights to small perturba-
tions in the node location is not uniform over all the nodes.
Some algebraic expressions suggested in the literature for
computing the weights performed better than others. This
has been noticed in Gautschi [8], Lether [9], and more
recently in Nehrkorn [10] and Yakimiw [11]. The sensitivity
of the Gaussian weights to the accuracy of the nodes is
not a major problem for low order quadrature rules. How-
ever, for relatively high order quadrature rules, certain
expressions for the weights are so sensitive to even small
round-off errors that they are practically useless for com-
puting the weights. Very high order Legendre quadrature
rules are currently used in global atmospheric spectral
models of high resolution (Ritchie et al. [12]). Spectral
modellers are also well aware of the extreme sensitivity
to the node precision of certain analytic expressions for
computing the Gauss–Legendre quadrature weights near
the polar regions. In high resolution atmospheric spectral
models, a loss of accuracy in the weights significantly im-
pacts the quality of long time integrations of complex atmo-
spheric fluid flows and thus the sensitivity problem must
be dealt with. Hence in general, it is incorrect to presume
that nodes which are accurate to machine precision will
invariably produce weights of the same level of accuracy.
A similar although less severe accuracy problem is also
present in the eigenvalue method originally proposed by
Golub and Welsh [13], where the weights are calculated
from the first eigenvector component. This aspect will be
examined in some detail.

The main purpose of this paper is to describe a general
method for deriving in classical Gauss–Christoffel quadra-
ture rules algebraic expressions for the weights which are
more robust and largely independent of perturbations in
the node location. Furthermore, a simple but highly effi-
cient technqiue for accurately computing the nodes is in-
cluded. This technique is essentially an extension of
Lether’s [9] suggestion and is based on the work of Ostrow-
ski [14] and Traub [15]. The general method is then applied
to various classical Gauss–Christoffel quadrature rules.
Because of its particular interest to atmospheric spectral
modellers, the Gauss–Legendre quadrature rule is exam-
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ined in great detail. To assess the value of the method, a
comparison of the results with those obtained with the
eigenvalue method is carried out.

The organization of the paper is as follows. Section 2.1
briefly recalls the essentials of the eigenvalue method of
Golub and Welsh for the computation of the nodes and
the weights in classical Gauss–Christoffel quadrature rules.
It is followed, in Section 2.2, by a detailed description of a
root-finding iteration technique which exhibits superlinear
convergence rates. Then, a general rule for deriving robust
analytic expressions for the Gaussian weights is developed
in Section 2.3. An implementation of this technique in
the Gauss–Legendre quadrature rule appear in Section 3,
together with a thorough comparison with the eigenvalue
method in Section 3.3. In the Appendix, the proposed
method is applied to derive formulas for many other classi-
cal Gauss–Christoffel quadrature rules, in particular, for
Lobatto, Radau, Hermite, and Laguerre quadratures. In
the conclusion (Section 4), we summarize and comment
on the results.

2. CLASSICAL GAUSS–CHRISTOFFEL
QUADRATURE RULES

Hereafter, we refer to the classical Gauss–Christoffel
quadrature rules as those which share the following proper-
ties: (i) the quadrature nodes are all real and simple; (ii) the
quadrature polynomials satisfy a three-term recurrence re-
lation and obey a second-order differential equation. Two
alternate methods for the computation of the weights in
these quadrature rules are discussed in this paper. These
two methods are referred to as the eigenvalue method and
the root-finding method. Both techniques are described in
many classic textbooks on numerical integration (See
Davis and Rabinowitz [3], for instance.)

2.1. The Eigenvalue Method

The eigenvalue method which was originally proposed
by Golub and Welsh [13] is based on the diagonalization
of a symmetric tridiagonal Jacobi matrix generated from
a three-term recurrence relation satisfied by the quadrature
polynomials. An efficient procedure for diagonalizing the
Jacobian matrix makes use of the implicitly shifted QL
algorithm described in Wilkinson and Reinsch [16]. The
eigenvalues of the matrix are just the quadrature nodes
and the weights are simply related to the corresponding
eigenvectors. More precisely, given a set of orthogonal
polynomials hpi jn

i50 obeying a three-term recurrence re-
lation

xpi21(x) 5 aipi(x) 1 bipi21(x) 1 ai21 pi22(x),

one can deduce a matrix relation

xP(x) 5 JP(x) 1 anpn(x)E,
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where

P(x) 5 [p0(x), p1(x), p2(x), ..., pn21(x)]T,

and E [0, 0, 0, ..., 1]T. In this relation, J is the symmetric
tridiagonal Jacobi matrix whose elements are the Gram–
Schmidt coefficients appearing in the three-term recur-
rence relation. Hence, if xk is a zero of pn(x), there follows

xkP(xk) 5 JP(xk),

and the eigenvalues of J are the requested quadrature
nodes. Making use of the Christoffel–Darboux identity
and the fact that pn(xk) 5 0, the Gaussian weights are then
expressed in terms of the eigenvectors of the Jacobian
matrix. In particular, the weights can be computed from
the first component of the orthonormal eigenvectors of J.

The eigenvalue method of Golub and Welsh is a power-
ful and efficient technique specially suited for classical
Gauss–Christoffel quadrature rules of low order. Since the
three-term recurrence relations for the quadrature poly-
nomials are precisely known, the coefficients of the Jacobi
matrix can be evaluated to machine precision. If this is
not the case, the method may be subject to numerical
instabilities, thus multiple-precision arithmetic may be re-
quired in order to obtain meaningful results (Gautschi [8]).
The eigenvalue method of Golub and Welsh is imple-
mented in most standard numerical software libraries. For
example, we obtained a revised version of the original
Golub and Welsh subroutines from the Netlib software
library. Numerical results obtained with this code are used
for comparison in Section 3.3.

2.2. The Root-Finding Method

The root-finding method is an alternative for locating the
nodes in Gauss–Christoffel quadrature rules since these
nodes are the zeros of the associated quadrature polynomi-
als. The method essentially rests on the general theory
for the solution of equations and systems of equations
elaborated by respected mathematicians such as Cauchy,
Chebyshev, Euler, Fourier, Gauss, Lagrange, Laguerre,
and Newton. A comprehensive description of the theory
can be found in the textbooks of Ostrowski [14] and
Traub [15].

Using a first approximation of the zero location of a
function, the root-finding method aims at improving the
initial guess by means of an iterative procedure involving
the function itself and its derivatives. The whole technique
relies on the assumption that the successive iterates will
eventually converge to the exact location of the required
zero. This convergence is secured, provided the function
is sufficiently smooth in a certain neighborhood of the
zero (i.e., avoiding rapidly oscillating functions or singular
functions, the derivatives of which are either undefined or
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zero) and that the zero initial guess location is close enough
to its exact location. Amongst other reasons, the rate of
convergence of the method closely depends on the particu-
lar value of the first derivative of the iterative function
itself. The optimum theoretical convergence rate of an
iterative scheme is always reached in the very close vicinity
of the zero itself. A well-known example of a root-finding
iterative scheme is the second-order Newton–Raphson
rule. Near the zero of the function, the rate of convergence
of the scheme is quadratic. (For a formal discussion of
the convergence properties of the iterative functions, see
Ostrowski [14, Chapter 7].) In the Gauss–Legendre quad-
rature rule application in Section 3, we shall examine in
greater detail how the convergence properties surface and
can be improved.

Implementations of iterative schemes with superlinear
convergence rates are rather limited, owing to the apparent
complexity brought upon by the computation of higher
order derivatives of the function. For this reason, the
Newton–Raphson scheme is usually chosen for its simplic-
ity and its well-defined properties. Some exceptions of
higher order iterative schemes are reported, for example,
in the textbook of Davis and Rabinowitz [3]. In his original
paper, Lether [9] develops a fifth-order iterative function
for the Gauss–Legendre quadrature rule. The main merit
of this paper is to have successfully implemented the
fundamental and general theory of iterative methods
for the solution of equations to the construction of super-
linear converging iterative functions in classical Gauss–
Christoffel quadrature rules. Furthermore, Lether suggests
a straightforward substitution technique for eliminating
higher order derivatives owing to the fact that the quadra-
ture polynomials obey a second-order differential equa-
tion. Unfortunately, for high order iterative functions, the
author himself admits that the algebra in this technique
rapidly becomes prohibitive. In the following, we shall
indicate how to circumvent this difficulty. Using fundamen-
tal properties shared by the iterative functions, we shall
establish a general method for deriving high order iterative
functions involving at most the quadrature polynomials
and their first derivatives of the classical Gauss–Christoffel
quadrature rules.

In this paper we shall be concerned with a real single-
valued function f(x) of a real variable x which possesses
a certain number of continuous derivatives in the neighbor-
hood of a zero a. After Traub [15], recall the following
theorem.

THEOREM 2.2.1. If the first derivative f 9(x) of f(x) does
not vanish in an interval about a zero a of f(x) and if the
lth derivative f (l)(x) is continuous in this interval, then f(x)
has an inverse g(x) and g (l)(x) is continuous in the interval.

Assume a 5 x 1 Dx, where Dx is a relatively small
deviation from a and a is such that f(a) 5 0 and

f 9(a) ? 0. Furthermore, let f ( j)(x) 5 d jf(x)/dx j represents
the jth derivative of f(x). Finally, let us define a function
fj such that

fj 5
f ( j)(x)
f 9(x)

, j 5 0, 1, 2, .... (1)

Notice that f1 5 1. (Hereafter, we shall use f 9(x) ; f (1)(x)
to express the first derivative of f(x) and we shall drop the
explicit x dependency whenever this is convenient.) In
particular, we have

f 9j 5 fj11 2 f2 fj , j 5 0, 1, 2, .... (2)

A Taylor series expansion of f(a)/ f 9(x) about a in terms
of Dx gives

Oy
j50

fj

j !
(Dx) j 5 0. (3)

If f(x) meets the conditions of Theorem 2.2.1, then (3) can
be inverted,

Dx 5 2 Oy
j51

Aj

j !
f j

0 , (4)

where f0 is defined according to (1) and the coefficients Aj

are given by the recurrence relation

A1 5 1
(5)

Aj 5 ( j 2 1) f2 Aj21 2 A9j21 , j 5 2, 3, ....

In particular,

A1 5 1

A2 5 f2

A3 5 3 f 2
2 2 f3

A4 5 15 f 3
2 2 10 f2 f3 1 f4 (6)

A5 5 105 f 4
2 2 105 f 2

2 f3 1 10 f 2
3 1 15 f2 f4 2 f5

A6 5 945 f 5
2 2 1260 f 3

2 f3 1 280 f2 f 2
3 1 210 f 2

2 f4

2 21 f2 f5 2 35 f3 f4 1 f6 .

???

(One can show that the sum of the coefficients in Aj is
( j 2 1)!. See Traub [15]) An alternative method for deduc-
ing Aj in terms of the derivatives of f is through the identity

Aj 5 (21) jf j
0 O

r
(21)r( j 2 1 1 r)! p

j

i50
Sfi

i!Dbi 1
bi !

,



where the sum is taken over all nonnegative integers bi

satisfying the equations

Oj

i52
(i 2 1)bi 5 j 2 1, r 5 Oj

j52
bj .

Finally, if we define Bj 5 Aj f j
0 , then the functions Bj obey

the recurrence relation

B1 5 f0 (7)

Bj 5 ( j 2 1)Bj21 2 f0 B9j21 , j 5 2, 3, ....

It is important to realize that Eq. (4) essentially states that,
in principle, the correction Dx to x can be computed exactly
without any need to iterate. In effect, the ultimate level
of accuracy of Dx is limited by the machine precision.
Furthermore, the series (4) is more or less severely trun-
cated which further reduces its accuracy. An iteration pro-
cedure is thus required in order to determine the location
of the zero to the machine precision.

Let a kth-order iterative scheme function be defined as

hDxjk 5 2 Ok21

j51

Aj

j !
f j

0 , k 5 2, 3, .... (8)

For instance, the iterative function hDxj2 5 2f0 leads to
nothing but the second-order Newton–Raphson iterative
scheme. If f(x) is a polynomial of order n and n @ 1, the
third order iterative scheme defined according to (8) can
be shown to reduce to the cubically convergent Laguerre
scheme (Wilkinson [17], Fox and Mayers [18]). The func-
tion hDxjk in (8) satisfies the recurrence relation

hDxjk 5 hDxjk21 2
Ak21

(k 2 1)!
f k21

0
(9)

5 hDxjk21 2
f0

k 2 1
(1 1 hDxj9k21), k 5 3, 4, ...,

where hDxj9k21 ; d(hDxjk21)/dx. The general iterative
method using (4) can be related to many particular tech-
niques and has sometimes been referred to as the reversion
of the Taylor series expansion method (Wilkinson [17])
or the inverse interpolation method (Fox and Mayers [18],
Traub [15]). It needs to be mentioned here that Gerlach
[19] has recently described yet another method for con-
structing superlinear converging iterative functions. The
method is basically a variant of (4). Indeed, let X be defined
such as

X 5 Oy
j52

Aj

j !
f j21

0 .
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If X 2 , 1, relation (4) can be written as

Dx 5 2
f0

1 2 X
.

Hence, superlinear converging iterative functions can be
derived. In particular, for m 5 2 in Gerlach’s convention,
we obtain

Dx 5 2
f0

1 2 As f2 f0
Q 2f0 S1 1

1
2

f2 f0D
which is equivalent to the third-order scheme according
to (8). However, for m 5 3, applying his method to the
iterative function

Dx 5 2f0 @F1 2
1
2

f2 f0 2
1
6 S3

2
f 2

2 2 f3D f 2
0

1 2 As f2 f0
G

where f0 , f2 , f3 are defined according to (1). From this
expression it is clear that higher order iterative functions
are just a series expansion in terms of the iterative function
of the preceding order. However, it is possible to show
that this expression for Dx is numerically as good as the
fifth-order scheme but certainly no better than the sixth-
order iterative functions. Gerlach’s technique allows repro-
ducing superlinear converging iterative functions, how-
ever, at the cost of undesirable complexity. For higher
m values, the algebra becomes rather tedious and simply
impracticable unless the functions whose zeros are sought
are simple. This contrasts with the method based on (4).
Given relations (4) and (5), it is relatively straightforward
to construct iterative schemes with superlinear conver-
gence rates, provided one is willing to compute the higher
derivatives, as indicated in (6). This, however, does not
constitute an outstanding numerical problem, provided
f(x) satisfies a second-order differential equation. In-
deed, if

f 0(x) 5 a2(x) f9(x) 1 b2(x) f(x)

or, according to the adopted convention defined in (1),

f2 5 a2(x) 1 b2(x) f0 ; (10)

then, the following relation holds:

fj 5 aj(x) fj21 1 bj(x) fj22 , j 5 2, 3, .... (11)

There are obvious advantages in using (4) for computing
higher derivatives. Nevertheless, one may choose to ex-
press these derivatives in terms of ascending powers of f0 ,
as in Lether [9]. As we mentioned earlier, for high order
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iterative schemes, the method of direct substitution sug-
gested by Lether is cumbersome and prone to errors. (In
fact, the erroneous factor C in Lether’s formula has been
corrected in the next section.) In addition, the method is
simply unworkable in certain classical Gauss–Christoffel
quadrature rules (e.g., Radau quadrature rule).

The hereafter proposed simpler method makes use of
one of the fundamental intrinsic properties shared by the
iterative functions (4). According to Traub [15, Theorem
2.6, and Chap. 5), if the properties of a basic sequence are
known, then many properties of any iteration function may
be deduced. It is these properties that we exploit to derive
simple superlinear convergent schemes. In particular, using
the relation (5), it can easily be demonstrated that (4)
obeys the following property:

d(Dx)
dx

5 21. (12)

It is clear then that one can construct various equivalent
iterative functions with superlinear convergence rates, pro-
vided property (12) is satisfied. This freedom of choice will
be examined in greater detail in the Legendre and Lobatto
quadrature rules. For now, consider an expression of (4)
in terms of f0 such that

Dx 5 2 Oy
j51

dj

j !
f j

0 , (13)

where the coefficients dj are some relatively simple func-
tions of x to be determined but are not functions of f(x)
or its derivatives. If (13) has to satisfy condition (12) in
some neighborhood of the nodes, then the recurrence rela-
tion for the coefficients dj ,

d1 5 1
(14)

dj11 5 2d 9j 1 ja2 dj 1 j( j 2 1)b2 dj21 , j 5 1, 2, ...,

holds, assuming (11) is true. Applying this relation to vari-
ous classical quadrature polynomials allows us to easily
derive iterative schemes of any desired order with superlin-
ear convergence rates solely in terms of very simple func-
tions and of f0 . A practical example of this method is
given in Section 3 for the Gauss–Legendre quadrature
rule. Other results for the Lobatto, Radau, Hermite, and
Laguerre quadrature rules are reported in the Appendix.

2.3. Computation of Gaussian Quadrature Weights

The computation of the Gaussian weights calls upon
some analytic expressions involving the quadrature poly-
nomials which must be evaluated at the node locations.
The precision of these weights more or less depends on

the accuracy of the quadrature nodes itself. In fact, this
dependency does create serious numerical problems in
many classical Gauss–Christoffel quadrature rules. The
eigenvalue method is not exempt from this peculiar prob-
lem. Indeed, in this approach, where the weight function
is related to the first component of the eigenvectors, a loss
of accuracy always occurs when the Gaussian weights are
relatively very small; besides, the small nodes themselves
lose accuracy in this method. The main reason for this
deficiency is that the accuracy of the nodes and the weights
directly depends on the accuracy of the initial Jacobi matrix
elements. Fortunately, these matrix elements are obtained
from exact recurrence relations and their level of precision
is determined according to the floating point arithmetic
used in their computation. In double precision, for in-
stance, the initial matrix elements are accurate to at least
15 significant digits. However, the eigenvalues (or the
nodes) and the corresponding eigenvectors (hence, the
weights) are only accurate to 15 decimal figures. Whatever
the resulting loss of accuracy, it is certainly not to the
benefit of using higher order quadratures to evaluate inte-
grals more precisely.

In the root-finding method, the accuracy problem of the
weights can be even more acute, depending on the analytic
expressions chosen for their computation. For very high
order quadrature rules, some expressions are so sensitive
to small round-off errors in the location of the nodes that
they produce completely erroneous values. Sensitivity to
small perturbations of the node locations has been ob-
served previously (Lether [9], Nehrkorn [10]) and is known
to exist in many classical Gauss–Christoffel quadrature
rules (Yakimiw [11]). Basically, Yakimiw showed that
large error in the weights due to small deviations in the
node location is bound to be generated when a singularity;
hence an abrupt variation of the weight functions happens
to be too close to the position of the nodes. A typical
example of such behavior is depicted in Fig. 1 for the
Gauss–Legendre quadrature of orders n 5 6, where the
weight is

w(x) 5
2(1 2 x 2)

[nPn21(x)]2 . (15)

Such a formula is widely used in spectral atmospheric mod-
els (Ritchie et al. [12]) and can be derived from the
Christoffel–Darboux identity and the recurrence relation
for the ordinary Legendre polynomials. The heavy line in
Fig. 1 represents th Gauss–Legendre weight function w(x)
in terms of x in the half-interval [0, 1]. The Gaussian
weights are obtained at the nodes, the locations of which
are indicated by the long-dash vertical lines. The dotted
line plots the ordinary Legendre polynomials P6(x) to a
constant. One can see that a small deviation or error in
the position of the node closest to x 5 1 will necessarily



induce a large error in the weight at that location. Some
numerical results when using (15) for the computation
of the Gaussian weights are reported in column 3 of
Tables III and IV for the Gauss–Legendre quadrature rule
of order n 5 92 and n 5 384, respectively (These are typical
values which can actually be used in numerical climate
simulation and weather forecast spectral models.). The first
Gaussian weights in that column are accurate to 11 and 9
significant digits, respectively, even though the nodes used
to compute these weights are accurate to 16 significant
digits! The control values are given in column 2 of these
tables. The problem of accuracy for the weights to round-
off errors of the nodes closest to the end-points of the
interval increases so rapidly with n that expression (15)
fails at some point to produce the correct values, unless
multiple precision arithmetic is called upon.

An alternative expression for the Gauss–Legendre
weights is written in terms of the first derivative of the
quadrature polynomials.
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w(x) 5
2(1 2 x 2)

[(1 2 x 2)P9n(x)]2
. (16)

The function is plotted in Fig. 2 and exhibits a less abrupt
variation in the vicinity of the nodes. This is even greater
for the nodes closest to the end-point.

Another well-known formula for the computation of
the weights (e.g., Eq. (19) in Lether [9]) depicts a similar
behavior in the vicinity of the nodes, as shown in Fig. 3.
In order to alleviate the sensitivity of the Gaussian weights
to the node location, simple expressions were derived
in (Yakimiw [11]). In what follows we propose a gen-
eral method for constructing analytic expressions for the
Gaussian weights that are more robust within a significantly
large neighborhood of the nodes.

First assume that f(x) is a quadrature polynomial
satisfying the condition stated in Theorem 2.2.1 (with
f9(x) ? 0 in the neighborhood of the nodes) and obeys a
second-order differential such that (10) holds. Moreover,

FIG. 1. Gauss–Legendre quadrature weight function (15) for n 5 6. The heavy line represents the Gauss–Legendre weight function w(x) given
by (15) for n 5 6. The long dash vertical lines indicate the x-position of the quadrature nodes (the zeros of the ordinary Legendre polynomials of
degree n 5 6 whose behavior is represented by the dotted line). The weights and the nodes are symmetric with respect to x 5 0 in the interval
[21, 1]. Notice the extremely sharp variation of w(x) at the nodes closest to the end-point of the interval.
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consider a weight function of the form

w(x) 5
k

[d0 f9(x)]2 , (17)

where k is some known constant and d0 is a simple function
of x. (For the Gauss–Legendre quadrature, k 5 2 and
d0 5 Ï1 2 x 2). Then, a valid expression for computing the
Gaussian weights is

w(x) 5 k @Ff 9(x) o
y

j50

dj

j !
f j

0G2

, (18)

where f0 5 f(x)/f9(x) as defined in (1) and dj is a simple
function of x. (Notice that the dj are different from those
given previously in (14)). The purpose of (18) is to be able
to modify the behavior of the weight function without
changing its value in the vicinity of the nodes. This happens
precisely when

dw(x)
dx

5 0. (19)

This condition readily implies that the coefficients dj in
(18) must satisfy the recurrence relation

dj11 5 2d 9j 1 ( j 2 1)a2 dj 1 j( j 2 2)b2 dj21 ,
(20)

j 5 0, 1, 2, ...,

where (10) has been used. By requesting that the weight
function obeys (19), it is very simple to derive analytic
expressions for computing the weights in the classical
Gauss–Christoffel quadrature rules that are practically in-
dependent of small errors which may be associated with
the nodes.

Retaining the first two terms in (18) leads to the results
reported in Yakimiw [11]. For nodes accurate to machine
precision, inclusion of these two terms is all that is needed
to compute the weight to their highest accuracy. If the
nodes carry a relatively large error, higher order terms
must be incorporated. In the next section, we implement
this method to construct weight functions for the Legendre
quadratures that include the first six terms. Analogous

FIG. 2. Gauss–Legendre quadrature weight function (16) for n 5 6. Same as in Fig. 1, except that the Gauss–Legendre weight function w(x)
given by (16) for n 5 6. Notice the less abrupt variation of w(x) at the nodes closest to the end-point of the interval compared to the variation
shown in Fig. 1 in that neighborhood.



results for other Gauss–Christoffel quadrature rules are
included in the Appendix. Finally, one must realize that
it is possible to construct classes of weight functions other
than (18) having similar properties to those derived in this
paper provided condition (19) is imposed.

3. APPLICATIONS

In this section we exploit the method proposed in the
previous section for deriving superlinear converging itera-
tive schemes which enable us to compute the nodes accu-
rately and efficiently. We then derive robust analytic ex-
pressions for the weights which satisfy condition (19). We
examine the Gauss–Legendre quadrature rule in great de-
tail in order to compare the results with the eigenvalue
method of Golub and Welsh.

3.1. Gauss–Legendre Quadrature

The Gauss–Legendre quadrature rule is defined by
the relation

E1

21
F(x) dx 5 On

i51
w(ai)F(ai ), (21)
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where the ai are the zeros of the ordinary Legendre poly-
nomials Pn(x) of degree n. Following the convention
adopted in the previous section, we have f(x) 5 Pn(x) and

fj 5
P( j)

n (x)
P9

n(x)
, j 5 0, 1, 2, ....

The ordinary Legendre polynomials obey the recurrence
relations and identities

P0(x) 5 1, P1(x) 5 x,

(n 1 1)Pn11(x) 5 (2n 1 1)xPn(x) 2 nPn21(x),
(22)

c2P9n(x) 5 n[Pn21(x) 2 xPn(x)],

f2 5
2x
c2 2

n
c2 f0 ; a2 1 b2 f0 ,

where, for convenience, we have defined c2 5 1 2 x2 and
n 5 n(n 1 1). According to the adopted convention (1),
higher order derivatives of the ordinary Legendre polyno-

FIG. 3. Gauss–Legendre quadrature weight function for n 5 6. Same as in Fig. 1, except that the Gauss–Legendre weight function w(x) given
by Eq. (19) in Lether [9], for n 5 6. The behavior of the function w(x) in the neighborhood of the nodes is very similar to the behavior of w(x)
given by (16) and shown in Fig. 2.
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mials satisfy the relation

fj 5
2( j 2 1)x

c2 fj 21 1
[( j 2 1)( j 2 2) 2 n]

c2 fj 22,
(23)

j 5 2, 3, ....

Using (23) to evaluate the derivatives in (6) and replacing
their values in (4), it is simple and straightforward to derive
superlinear converging iterative schemes for computing
the zeros of Pn(x). To obtain instead a series expansion of
Dx solely in terms of f0 as in (13), we proceed as follows.
In order to simplify the mathematical derivation, write (13)
in the equivalent form,

Dx 5 2c2 Oy
j51

dj

j ! Sf0

c2Dj

, (24)

so that

dj 5
dj

c2( j21) , d9j 5
d 9j

c2( j21) 1
2( j 2 1)xdj

c2j .

Translated in terms of dj , recurrence relation (14) becomes

d1 5 1
(25)

dj11 5 2c2d 9j 1 2xdj 2 j( j 2 1)nc2dj 21, j 5 1, 2, ...,

where, for the ordinary Legendre polynomials, we have
used the fact that a2 5 2x/c2 and b2 5 2n/c2, according
to (22) with n 5 n(n 1 1). Thus, the first five terms in
(24) are

d1 5 1

d2 5 2x

d3 5 2[2 2 (3 1 n)c2 ] 5 2[(3 1 n)x 2 2 (1 1 n)]

d4 5 4x[2 2 (6 1 5n)c2 ] 5 4x[(6 1 5n)x2

(26)
2 (4 1 5n)]

d5 5 4[4 2 2(15 1 16n)c2 1 (30 1 43n 1 6n2 )c4 ]

5 4[(30 1 43n 1 6n2 )x4 2 6(2n2 1 9n 1 5)x2

1 (3n 1 4)(2n 1 1)].

It can be shown that the first four terms exactly reproduce
the results given in Lether [9] (after correcting for a missing
x in the expression of C in Lether).

It has been mentioned in Section 2.2 that it is possible
to construct series expansions for Dx other than (24), pro-
vided that the new expression obeys condition (12). For
instance, one such series expansion could be in terms of
the ratio Pn(x)/Pn21(x). However, such a choice should be

avoided since the zero of Pn21(x) are increasingly closer
to the zeros of Pn(x) near the end-points of the interval
[21, 1] as n increases; hence, the stability properties of the
series Dx deteriorate significantly in these regions. On the
other hand, the following function is a good, if not a better,
candidate for producing a highly stable series expansion
for Dx with superlinear convergence rates:

cPn(x)

c2P9n(x) 2 xPn(x)
5

cf0

c2 2 xf0
. (27)

Defining cF(x) 5 c2P9n(x) 2 xPn(x), we obtain

Dx 5 2 Oy
j51

dj

j ! SPn

F Dj

. (28)

For (28) to satisfy (12), the coefficients dj must obey the
recurrence relation

d1 5 c

dj11 5 2cd9j 2
jx
c

dj 2 j( j 2 1)
(nc2 1 1)

c2 dj21 , (29)

j 5 1, 2, ....

In particular,

d1 5 c,

d2 5 0,

d3 5 2
2(nc2 1 1)

c
, (30)

d4 5
4x
c2 (nc2 1 2),

d5 5
4
c3 [3nc4(2n 1 1) 1 2c2(4n 1 5) 1 6], etc.

This leads to a simple but highly efficient iteration func-
tion Dx,

hDxj6 5 2c2h H1 1
h2

3 FA 1
h
2 SB 1 C

h
5DGJ ,

where h 5 f0/(c2 2 xf0 ),

A 5 2(nc2 1 1), B 5 x(nc2 1 2),

C 5 3nc4(2n 1 1) 1 2c2(4n 1 5) 1 6.

The same function F will be shown to be also a good
candidate for producing a robust analytic expression for
w(x). It is interesting to plot the function Dx given by (24)
in terms of x and to picture the effect of adding more



terms in the series. In Fig. 4, we plot the second-order
iteration function,

hDxj2 5 2f0 5 2
Pn(x)

P9n(x)
(31)

(Newton–Raphson rule). Using (2), we have

dhDxj2

dx
5 2(1 2 f2 f0 )

and d(hDxj2)/dx ua 5 21. Thus, (31) satisfies (12) exactly
at the node a only.

However, if we include the first five terms in (24), i.e.,

hDxj6 5 2c2 O5
j51

dj

j ! Sf0

c2Dj

, (32)
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we get the graph shown in Fig. 5. From this graph, one
can see that the slope of (32) is practically constant and
equal to (21) for a significant large interval around the
nodes. Hence, such a function leads to a superlinear con-
vergence scheme in this interval. A similar behavior can
be shown to hold for expression (28).

A robust analytic expression for the Gauss–Legendre
weights satisfying the condition (19) can be derived from
(18). In order to simplify the mathematics, write (18) as

w(x) 5 2@Fcf 9(x) Oy
j50

dj

j ! Sf0

c2DjG2

, (33)

where d0 5 1. According to (20), this implies that

dj11 5 c2d9j 2 xdj 2 j( j 2 2)nc2dj21, j 5 0, 1, 2, ... (34)

FIG. 4. Gauss–Legendre quadrature nodes for n 5 6. The heavy line represents the function hDxj2 given by (31) (Newton–Raphson rule) for
the Gauss–Legendre quadrature rule of order n 5 6. The long dash vertical lines indicate the x-position of the quadrature nodes (the zeros of the
ordinary Legendre polynomials of degree n 5 6 whose behavior is represented by the dotted line). The nodes are symmetric with respect to x 5

0 in the interval [21, 1]. Notice the behavior of Dx in the neighborhood of the nodes. Singularities and nodes of hDxj2 interlace. The nodes are
the attractors within the singularities. Any initial guess of the nodes within two singularities will eventually converge towards the node located
between these singularities.
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(where c2 5 1 2 x2 ) and n 5 n(n 1 1)). In particular, we
find that

d0 5 1,

d1 5 2x,

d2 5 nc2 1 1, (35)

d3 5 x(nc2 2 1),

d4 5 1 2 2nc2 2 nc4(3n 1 2),

d5 5 2x[1 2 6nc2 1 nc4(17n 1 6)], etc.,

or explicitly,

w(x) 5 2c2@Hc2P9n 2 xPn 1
1
2 Fn(n 1 1)

(36)

1
1
c2G P2

n

P9n
1 ???J2

.

If we use the function F defined in (27), instead of f0 , we
can derive yet another valid and more robust expression
for the weight function:

w(x) 5 2@HF 1
1
2 Fn(n 1 1) 1

1
c2G P2

n

F
(37)

2
x
3c Fn(n 1 1) 1

2
c2G P3

n

F 2 1 ???J2

.

To visualize the effect of adding these terms in the weight
formula, we plot the function (33) for n 5 6. In Fig. 6,
only the first two terms d0 and d1 in (33) are retained.
Figure 7 plots (36), which includes the d2 term.

In these figures, the heavy line represents w(x) and the
vertical lines indicate the position of the nodes. These
results should be compared with those of Fig. 1. It is clear
from Fig. 7 that relatively large deviations or errors in the
position of the nodes will not affect the value of the

FIG. 5. Gauss–Legendre quadrature nodes for n 5 6. Same as in Fig. 4, except that the function hDxj6 given by (32) includes the first five terms.
Notice the linear behavior of Dx (with slope equal to 21) for a relatively large neighborhood around the nodes, leading to a superlinear converging
iterative scheme in that neighborhood.



Gaussian weights in the neighborhood of these nodes. We
applied the same method to other quadrature rules
and the results are summarized in the Appendix. Notice
also that second-order correction terms to the analytic
expressions of the weight functions in classical Gauss–
Christoffel quadrature rules have been briefly examined
in Yakimiw [22].

In the following section, we apply these formulas to
actually compute the nodes and the weights in the Gauss–
Legendre quadrature rule and we compare the results with
the ones obtained using the eigenvalue method of Golub
and Welsh.

3.2. Initial Guess and Actual Computation

In order to apply the root-finding technique described
in the preceding paragraph, an initial guess of the nodes
is needed. There exist quite accurate and efficient formulas
for computing approximate values of the zeros of the ordi-
nary Legendre polynomials. Let xk be the kth zero of
the ordinary Legendre polynomials Pn(x). Then, a good
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approximation of these zeros is given in Lether [9]

xk 5 cos5 jk

Sn2 1 n 1
1
3D1/231 2

j 2
k 2 2

360Sn2 1 n 1
1
3D246

(38)

1 O(n27)

and

xk 5 H1 2
(n 2 1)

8n3 2
1

384n4 S39 2
28

sin2(uk)DJ cos(uk )
(39)

1 O(n25),

where

uk 5 S4k 2 1
4n 1 2D f

FIG. 6. Gauss–Legendre quadrature weight function for n 5 6. Same as in Fig. 1, except that the heavy line represents the function w(x) given
by (33) for the Gauss–Legendre quadrature rule of order n 5 6 when the first two terms are retained in the series (d0 and d1). Notice all the nodes
coincide with the minima of w(x), where its variation near these nodes is not large. Similar results were reported in Yakimiw [11].
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and jk is the kth positive zero of the Bessel function of the
first kind J0(x). A highly accurate approximation of jk ,
valid for all k, can be found in Branders et al. [20],

jk P b 1
a0 1 a1 b2 1 a2 b4 1 a3 b6

b 1 b1 b3 1 b2 b5 1 b3 b7

with b 5 (4k 2 1)f/4 and

a0 5 0.68289 48973 49453 E 2 01

a1 5 0.13142 08074 70708 E 1 00

a2 5 0.24598 82418 03681 E 2 01

a3 5 0.81300 57215 43268 E 2 03

b1 5 0.11683 72425 70470 E 1 01

b2 5 0.20099 11221 97811 E 1 00

b3 5 0.65040 45772 61471 E 2 02

It can be shown that expression (38) gives a better approxi-
mation of the zeros closest to the end-point interval

[21, 1], whereas expression (39) is superior in the middle
of the interval. An empirical rule has been designed for
selecting the formula which leads to the best approxima-
tion. The rule goes as follows: Use formula (38) whenever
k is such that

k # NINT H0.062
n

(n 1 33)(n 2 1.5)J ; (40)

otherwise, take (39), where NINT means the nearest inte-
ger. For n $ 5, for instance, formula (38) gives at least 14
significant correct digits for the first few nodes closest to
the end-points. In general for other values of k and for
high values of n, the above rule guarantees at least eight
accurate significant digits for the nodes. We do not recom-
mend using (39) for the nodes closest to the endpoints
since it gives a relatively poor initial guess for these nodes.
Lower order formulas analogous to (39) (which are used
in many applications) provide a poor initial guess for the
nodes. Lether [9] suggested using (38) only for the first
node nearest the end-point of the interval. Given the initial

FIG. 7. Gauss–Legendre quadrature weight function for n 5 6. Same as in Fig. 1, except that the weight function w(x) is given by (36) for the
Gauss–Legendre quadrature rule of order n 5 6 when the first three terms (d0, d1 , and d2 ) are retained in the series (33). Notice that linear (flat)
behavior of w(x) (with slope equal to 0) for a relatively large interval in the neighborhood of the nodes.



guesses of the nodes, first the ordinary Legendre polynomi-
als Pn(x) are evaluated using the recurrence relation and
its first derivative according to (22). This computation is
relatively the most expensive operation of the entire
scheme. With these initial approximations of the nodes,
we use a fifth-order iterative scheme based on (24) and
(26) to determine the correction hDxkj5 to xk . Given the
initial guess suggested above and for quadrature order
sufficiently large, the nodes ak 5 xk 1 hDxk j5 are then
computed to machine precision (16 significant digits in
double-precision arithmetic). For very low quadrature or-
ders (for n less than 5), an iteration may be required. In
all the applications, this one-iteration scheme was used
resulting in practically no significant loss in efficiency. Since
the Legendre polynomial and its first derivative need to
be evaluated at the new values, xk 1 Dx, the following
procedure was adopted. In the iteration step, rather than
using the recurrence relation for the calculation of the
Legendre polynomial and its first derivatives, it is more
efficient to compute the required quantities by means of
a Taylor series in terms of Dx. According to the convention
adopted in Section 2.2 and using (23), evaluate f0(xk 1
Dx) 5 Pn(xk 1 Dx)/(P9n(xk 1 Dx), where

Pn(xk 1 Dx)

P9n(xk)
5 O5

j50

fj

j !
Dx j,

(41)

P9n(xk 1 Dx)

P9n(xk)
5 O4

j50

fj11

j !
Dx j.

Following this procedure ensures full precision for the
nodes for any quadrature order. Once the nodes have been
computed, apply (33), together with (35), to calculate the
Gaussian weights. Observe that the accuracy to which the
weights may be found is now limited only by the accuracy
with which the ordinary Legendre polynomial and its deriv-
ative may be evaluated. For this reason, we suggest using
a highly accurate formula for these computations near the
end-points of the interval of integration (u is the colatitude)

Pn(u) 5
1

22n On/2

j50
«n22j

(2 j)!(2n 2 2j)!
[ j !(n 2 j)!]2 cos[(n 2 2 j)u] (42)

and

P9n(u) 5 2
1

22n On/2

j50
«n22j

(n 2 2 j)!(2 j)!(2n 2 2 j)!
[ j !(n 2 j)!]2

(43)
sin[(n 2 2 j)u],

where n/2 means the integer value of n/2 and «n is the
Neumann number («0 5 1 and «n 5 2 for n . 0). At nodes
away from the end-points, for k . INT(3.3 loge(n)) in the
(0, 1) interval region, we use the recurrence relation (22)
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which gives superior results and is computationally less
expensive than using the previous expressions (42) and
(43). Following this procedure, extensive numerical tests
were carried out in the Gauss–Legendre quadrature rule.
Then, the results were compared with those obtained with
the standard eigenvalue method of Golub and Welsh.
Hereafter follows a brief discussion of the findings.

3.3. Results and Comparisons

Numerical tests were performed in single and in double
precision arithmetic for Gauss–Legendre quadrature rules
of order ranging from 2 to 4000 using both techniques, the
eigenvalue method implemented in most software libraries
and the root-finding method developed in this paper. Two
criteria were examined: numerical accuracy and computa-
tional efficiency. For the eigenvalue method, single and
double precision versions of the code were obtained from
the Netlib software library. This code is based on the origi-
nal article of Golub and Welsh [13]. The diagonalization
of the Jacobian matrix makes use of the highly efficient
implicitly shifted QL-algorithm described in Wilkinson and
Reinsch [16]. We were able to optimize the code by a
factor of 27% mainly by taking into account the symmetry
properties obeyed by the Gauss–Legendre quadrature
nodes and weights. It is this optimized code that was used
in the tests. In the root-finding method, a first guess of
the Gauss–Legendre quadrature nodes was generated with
(38) and (39), according to the technique described in Sec-
tion 3.2. A fifth-order one-iteration scheme derived from
(24) and (26) produced the desired nodes. The ordinary
Legendre quadrature polynomials were initially evaluated
by recurrence (22), and subsequently by a Taylor series
expansion which included the first five terms, as indicated
in (41). The weight computation proceeded, using next an
analytic expression such as (33) including up to six terms
with the Legendre polynomials calculated according to
the method described in Section 3.2. Simpler, lower order
schemes were also tested and showed no significant gain
in efficiency. The tables published by Stroud and Secrest
[21] which report the nodes and the weights to 30 significant
digits served as control values.

Table I and Table II give the results for the node compu-
tation of the Gauss–Legendre quadrature rules of order
n 5 92 and n 5 384, respectively. Table III and Table
IV include the corresponding Gauss–Legendre quadrature
weights. These are typical results and we have reported in
these tables only the nodes and the weights in the interval
where their accuracy is most likely to differ in the two
methods of computation. In addition, these cases were
chosen because of their actual interest to climate and atmo-
spheric forecast modellers.

With regard to quadrature accuracy, it was found that,
whatever iterative scheme is used, the root-finding tech-



TABLE I

Gauss–Legendre Quadrature Rule with n 5 92 Nodes

Note. Results for the Gauss–Legendre quadrature nodes computation in double precision floating point IEEE arithmetic. Only nodes close to
the end-points and in the middle of the interval of integration are reported as they are where accuracy is most likely to differ in the two methods
of computation. The control values in column 2 are from Stroud and Secrest [21] and are given to 18 significant digits. We report the computed
values with 17 significant digits. In double precision arithmetic these values should be correct to at most 16 significant digits. The root-finding method
produces nodes which are accurate to 16 significant digits, whereas the eigenvalue method gives in general 15 correct decimals and loses accuracy
for nodes that are very small.
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nique ultimately produces nodes which are accurate to
machine precision up to the last digits (e.g., 16 significant
digits in double precision arithmetic), as shown in column
3 of Table I and Table II (In fact, we report the results to
17 digits). Column 2 of these tables contains the control
values of Stroud and Secrest [21] given here to 18 signifi-

cant digits. The accuracy of the nodes in the eigenvalue
method which are obtained from the diagonalization of a
tridiagonal Jacobi matrix depends on the accuracy of the
initial matrix elements of that matrix. Fortunately, these
matrix elements are known exactly (to machine precision)
since they are generated from a known three-term recur-



rence relation. Consequently, let us say in double precision
arithmetic, the matrix elements are correct to at least 15
significant digits. However, it was found that the computed
eigenvalues of the matrix are correct to 15 decimal places
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but not necessarily to 15 significant digits. This results in
a loss of accuracy for very small nodes as can be seen
to happen in column 4 of Table I and Table II. For the
Gauss–Legendre quadrature, the nodes in the middle of

TABLE II

Gauss–Legendre Quadrature Rule with n 5 384 Nodes

Note. Same as in Table I but for Gauss–Legendre quadrature rule with 384 nodes. The increased loss of accuracy for the nodes computed with
the eigenvalue method shown in column 4 is consistent for the smallest nodes. No such loss is observed for the nodes computed with the root-
finding method, as shown in column 3.
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the interval [21, 1] are significantly smaller than 1, whereas
the values of the nodes nearest the end-points approach
1. For relatively large quadrature order, the difference may
reach a few orders of magnitude resulting in a significant
loss of accuracy for the nodes in the middle of the interval

region. Such a loss does not occur in the root-finding
method.

Concerning the weight accuracy, the eigenvalue method
again guarantees weights which are accurate to 15 decimal
places (in double precision arithmetic) but not necessarily

TABLE III

Results for the Gauss–Legendre Quadrature Weight for n 5 92

Note. Results for the Gauss–Legendre quadrature weight computation in double precision floating point IEEE arithmetic. The second column
contains the control values from Stroud and Secrest [21]. Only the weights which correspond to the nodes reported in Table I are given. The first
few weights are the ones which show the largest difference between various methods used for their computation. With nodes accurate to 16 significant
digits such as shown in Table I, the weight computation results using (15) are shown in column 3. The eigenvalue results for the weights are given
in column 5. The weights computed with the new expression described in Section 3 are reported in column 4. Provided enough correction terms
are kept in the expression, these weights are practically independent of large magnitude errors of the order of 1/n4 in the nodes, where n is the
number of quadrature nodes.



to 15 significant digits. This is a real disadvantage because,
as the quadrature order gets larger, the Gauss–Legendre
quadrature weights get smaller resulting in a loss of a larger
number of significant digits. This result defeats, in a sense,
the whole purpose of using quadrature rules of very high
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order to compute integrals more accurately. The problem
in addition is more severe for weights nearest the end-
points of the interval. This peculiar loss of accuracy re-
flected in the loss of significant digits for the Gauss–
Legendre weights can be seen in column 4 of Table III

TABLE IV

Results for the Gauss–Legendre Quadrature Weight for n 5 384

Note. Same as in Table III but for Gauss–Legendre quadrature rule with n 5 384 nodes. In addition to giving superior results for the weights,
the proposed method is more efficient than the eigenvalue method by a factor of at least 5.
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and Table IV. One may observe that the loss of accuracy
is larger for the first few weights nearest the end-points.
In the Gauss–Legendre quadrature rule, if x is the sine
of the latitude, then one can show that the weights are
proportional to the cosine of that latitude. Hence, the pecu-
liar behavior of the nodes and the weights in the regions
mentioned above. Using an analytical expression such as
the one given in (15) for computing the Gauss–Legendre
weights leads to an even more serious problem of accuracy,
especially for small weights nearest the end-points. The
reason for such a problem is depicted in Fig. 1 for a quadra-
ture rule of very low order. Column 3 in Table III and
in Table IV reproduces the weights computed in double
precision arithmetic using (15) when the nodes are accurate
to 16 significant digits such as shown in column 3 of Table
I and of Table II. It can be seen that the accuracy of the
weights nearest the end-points is unacceptably low. In fact,
we have tested the consequences of using weights calcu-
lated from (15) in a high resolution atmospheric spectral
forecast model similar to the one described in Ritchie et al.
[12] and found a measurable deterioration in the five-day
forecast results.

Using nodes accurate to 16 significant digits (column
3 of Table I and Table II) and retaining only the first
two terms in (33) is sufficient to produce weights with
the accuracy shown in column 4 of Table III and of Table
IV. These results are general and clearly demonstrate
the superiority of the proposed technique compared to
the eigenvalue method whose results appear in column
5 of Table III and Table IV. For n 5 92 in Table III,
the first weight nearest the end-point has 14 correct
significant digits when computed with (33), as shown in
column 4, compared to 12 in the eigenvalue method
(column 5). Whereas expression (15) guarantees only
11 significant digits for the weights (column 3). For a
Gauss–Legendre quadrature rule of order n 5 384 given
in Table IV the differences in the weight accuracy get
even larger. The expression (33) gives 15 significant digits
for the first weight nearest the end-point, whereas the
eigenvalue method produces only 11 correct digits. The
weight computed with (15) further deteriorates and barely
gives nine correct significant digits.

There is another advantage of using analytic expressions
such as (33) or other analogous expressions such as (36).
It is that these expressions provide accurate weights even
though the nodes may carry a relatively large error. When
five or six terms are included in the analytic expression
(33) (i.e., terms proportional to d0 and up to d5 ), then the
weights are not sensitive to perturbations in the nodes of
the order of 1/n4, where n is the number of quadrature
nodes. This robustness of the weight expression in the
neighborhood of the nodes is due to the peculiar behavior
of the weight function such as the one depicted in Fig. 7.
Even a very small error in the nodes has a devastating result

on the accuracy of the weights given by (15). Similarly, a
small error in the initial elements of the Jacobi matrix has
a direct impact on the accuracy of the weights generated
in the eigenvalue method. Similar tests were also per-
formed in single precision arithmetic and small perturba-
tions in the nodes had an analogous impact on the
weight precision.

As far as the efficiency of the nodes and of the weight
computation is concerned, one must admit that the meth-
ods examined in this paper are all very efficient. However,
it was found that the root-finding method implemented
was at least five times more efficient than the optimized
version of the Netlib eigenvalue method, as described pre-
viously. This is clear, especially for very high quadrature
order. The results are shown in Table V for various Gauss–
Legendre quadrature rules of order up to 8000. It is seen
that, for very high order quadrature rules, the efficiency
of the eigenvalue method deteriorates markedly from the
root-finding method. The timings reported in column 2 of
Table V are for the comptutation of the nodes and of the
weights. The iterative scheme for computing the nodes
included up to five terms in (24) with one iteration where
the new values for the Legendre polynomials was com-
puted with a Taylor series expansion with five terms. For
the weight computation, we used an expression such as
(33) with six terms included in the series. The computing
cost for adding these higher order terms in the computation
of the nodes and of the weights is minimal compared to
the cost of evaluating the ordinary Legendre polynomials
by recursion (22) or by using expressions such as (42) and
(43). For particular applications, one can easily tailor an
iteration scheme and an analytic weight function that com-

TABLE V

CPU Time (in seconds) for Gauss–Legendre Quadrature

CPU time (in seconds)
Total number

of nodes Root-finding method Eigenvalue method

50 0.01 0.01
100 0.01 0.03
200 0.03 0.10
500 0.12 0.58

1000 0.42 2.26
2000 1.59 8.94
4000 6.19 34.68
6000 13.80 76.65
8000 24.41 133.62

Note. Comparison of the computing cost (in seconds) for the evaluation
of Gauss–Legendre quadrature nodes and weights of order n following
the proposed method in this paper and the Golub–Welsh eigenvalue
method. The computation was carried in double precision floating point
IEEE arithmetic using a SGI Power Challenge computer. The timing for
the eigenvalue method takes into account a code optimization mentioned
in Section 3.3.



bine all the qualities of accuracy and efficiency, as well
as simplicity.

The method developed in this paper was also applied
and tested for the classical Gauss–Christoffel quadrature
rules described in the Appendix. Very similar conclusions
were reached concerning the accuracy and the efficiency
of this method. Some results were also reported in Ya-
kimiw [11].

4. CONCLUSION

A simple, highly accurate and efficient method for com-
puting the nodes and the weights in the classical Gauss–
Christoffel quadrature rules has been presented. The com-
putation relies on using a root-finding technique for the
nodes and analytic expressions for the weights. The root-
finding technique itself is based on iterative schemes exhib-
iting superlinear convergence rates and involving solely
the quadrature polynomials and their first derivatives. Con-
trary to previous analytic expressions widely used for com-
puting the quadrature weights, the new expressions are
more robust, resulting in a significant improvement in accu-
racy for the weights, even though the nodes may carry a
relatively large error. These new expressions need only
the accurate evaluation of the quadrature polynomials and
their first derivatives.

Extensive tests were performed in single and double
precision IEEE arithmetic in order to assess the method
in terms of accuracy and efficiency. The results were com-
pared with the eigenvalue method proposed in 1969 by
Golub and Welsh [13] and implemented in most software
libraries. We obtained both single and double versions of
the Golub–Welsh code from the Netlib software library.
The code was further optimized by a factor of 27% in the
case of the Gauss–Legendre quadrature rule mainly by
taking into account the symmetry properties obeyed by
the nodes and the weights.

In terms of accuracy for the nodes and, most important,
for the weights, the tests indicate that the method devel-
oped in this paper gives consistently superior results, com-
pared to the eigenvalue method. This is especially true for
very high order quadrature rules. This can be seen, for
instance, in Table I and Table II for the nodes and in Table
III and Table IV for the weights. In the eigenvalue method
with double precision arithmetic, the resulting eigenvalues,
and thus the nodes, are given with 15 correct decimal places
but not necessarily with 15 accurate significant digits. This
is true, provided the initial elements of the Jacobi matrix
are known to at least 15 significant digits. The same rule
applies for the quadrature weights. This loss of accuracy in
the nodes and in the weights increases with the quadrature
order since the nodes and the weights become increasingly
small in certain regions of the interval of integration. This
is a real disadvantage since it defeats the whole purpose
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of using higher order quadrature rules to compute integrals
more accurately.

In addition to giving superior results, the proposed
method turns out to be more efficient than the eigen-
value method by a factor of at least 5. This can be seen in
Table V for the Gauss–Legendre quadrature rule, espe-
cially for very high order quadrature rules. For these rea-
sons, for its accuracy, its efficiency and its simplicity, the
method developed for the Gauss–Legendre quadrature
rule has been implemented in the Canadian climate spec-
tral model and the operational high resolution atmospheric
spectral forecast model. A version of the Gauss–Legendre
quadrature code is available on request from the author
at eyakimiw@cmc.doe.ca.

APPENDIX A: EFFICIENT AND ACCURATE FORMULAS
FOR COMPUTING THE NODES AND THE WEIGHTS

IN CLASSICAL GAUSS–CHRISTOFFEL
QUADRATURE RULES

The general method described in this paper is applied
to various Gauss–Christoffel quadrature rules, where the
quadrature polynomials are known to obey a second-order
differential equation. Superlinear converging iterative
schemes for computing the nodes are given as well as high
order analytic expressions for the Gaussian weights which
are practically independent of the rounding-error in the
nodes and involve solely the quadrature polynomials and
their first derivatives. The following rules are examined,
Lobatto, Radau, Hermite, and Laguerre. Similar formulas
for other related Gauss–Christoffel quadrature rules can
easily be derived.

A.1. Gauss–Lobatto Quadrature Rule

The Gauss–Lobatto quadrature rule which includes the
two end-points of the interval of integration is given as

E1

21
F(x) dx 5

2
n(n 2 1)

[F(21) 1 F(1)] 1 On21

i52
w(xi)F(xi),

where the quadrature nodes xi are the zeros of the first
derivative P9n21(x) of the ordinary Legendre polynomials
of degree n 2 1. For the Lobatto quadrature polynomials,
one can use either P9n21(x) or (1 2 x2)P9n21(x) whose zeros
include the end-points. In practice, the weights at the end-
points are known exactly and need not to be computed
through analytic expressions. However, both choices are
examined as possible candidates for deriving high order
iterative schemes and robust analytical expressions for
the weights.

A.1.1. Using P9n21(x) in Gauss–Lobatto Quadrature
Rule. Let f(x) 5 P9n21 so that f9(x) 5 P(2)

n21(x). Then, ac-
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cording to the convention adopted in Section 2.2,

f0 5
P9n21

P(2)
n21

,
(A.1.1)

f2 5
4x
c2 1

2 2 n
c2 f0 ; a2 1 b2 f0 ,

where c2 5 1 2 x2 and n 5 n(n 2 1). Higher order deriva-
tives of f(x) obey the following relations:

fj 5
2 jx
c2 fj21 1

j( j 2 1) 2 n
c2 fj22, j 5 2, 3, .... (A.1.2)

Let us rewrite (13) as

Dx 5 2c2 Oy
j51

dj

j ! Sf0

c2Dj

. (A.1.3)

Since

a2 5
4x
c2 , b2 5

2 2 n
c2 ,

and

dj 5
dj

c2( j21) , d9j 5
d9j

c2( j21) 1
2( j 2 1)x

c2 j dj ,

the substitution of dj and d9j in (14) leads to the following
recurrence relation for the coefficients dj in (A.1.3):

d1 5 1

dj11 5 2c2d9j 1 2( j 1 1)xdj
(A.1.4)

1 j( j 2 1)(2 2 n)c2dj21,

j 5 1, 2, ....

In particular, we have

d1 5 1

d2 5 4x

d3 5 2(12x2 2 nc2 ) (A.1.5)

d4 5 4x(48x 2 2 11nc2 )

d5 5 4[480x 4 2 nc2(203x 2 1 1 2 6nc2 )],

where c2 5 1 2 x 2 and n 5 n(n 2 1).
Similarly, the general Gaussian weight formula (18) is

written as

w(x) 5 2n@Fc2f 9 Oy
j50

dj

j ! Sf0

c2DjG2

. (A.1.6)

From (20), the recurrence relation holds for dj in (A.1.6):

d0 5 1

dj11 5 2c2d9j 1 2( j 2 1)xdj
(A.1.7)

1 j( j 2 2)(2 2 n)c2dj21,

j 5 0, 1, 2, ....

The first terms in (A.1.6) are

d0 5 1

d1 5 22x

d2 5 nc2 (A.1.8)

d3 5 4nxc2

d4 5 nc2[24 2 (22 1 3n)c2]

d5 5 2nxc2[96 2 (78 1 31n)c2],

where again we have defined c2 5 1 2 x 2 and n 5 n(n 2 1).

A.1.2. Using c2P9n21(x) in Gauss–Lobatto Quadrature
Rule. If we choose

f(x) 5 c2P9n21(x) (A.1.9)

as the Gauss–Lobatto quadrature polynomials, where
c2 5 1 2 x 2, then

f 9(x) 5 2nPn21(x), (A.1.10)

where n 5 n(n 2 1) and

f2 5 2
n
c2 f0 . (A.1.11)

Hence, a2 5 0 and b2 5 2n/c2. In general, the higher
derivatives in this case are

fj 5
2( j 2 2)x

c2 fj21 1
( j 2 2)( j 2 3) 2 n

c2 fj22 ,

(A.1.12)
j 5 2, 3, ....

From (13), recall that

Dx 5 2 Oy
j21

dj

j !
f j

0 . (A.1.13)

Then (14) becomes

d1 5 1
(A.1.14)

dj11 5 2d 9j 2 j( j 2 1)
n
c2 dj21 , j 5 1, 2, ....



In particular, the first five dj’s in (A.1.13) are

d1 5 1

d2 5 0

d3 5 2
2n
c2 (A.1.15)

d4 5
4nx
c4

d5 5 2
4n
c6 (1 1 3x 2 2 6nc2 ),

where c2 5 1 2 x 2 and n 5 n(n 2 1). One can see that
the resulting expression for Dx in (A.1.13) with the coeffi-
cients given by (A.1.15) is somehow simpler than those in
(A.1.5) and, thus, is easier to compute. Indeed, after some
simplifications, the expression leads to a rapidly converg-
ing series:

Dx 5
c2F
n H1 2

c2F 2

3n F1 1
x

2n
F

(A.1.16)

1
(1 1 3x2 2 6nc2)

10n2 F 2 1 ???GJ,

where F ; P9n21/Pn21 , c2 5 1 2 x 2, and n 5 n(n 2 1).
Using the same polynomials defined in (A.1.9) in the
weight formula (18), we have

w(x) 5 2n@F2 nPn21 Oy
j50

dj

j !
f j

0G2

, (A.1.17)

where

d0 5 1
(A.1.18)

dj11 5 2d 9j 2 j( j 2 2)
n
c2 dj21 , j 5 0, 1, 2, ...,

so that

d0 5 1

d1 5 0

d2 5
n
c2

(A.1.19)

d3 5 2
2nx
c4

d4 5
2n
c6 S1 1 3x2 2

3
2

nc2D
d5 5 2

24nx
c8 S1 1 x2 2

7
6

nc2D,
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where c2 5 1 2 x2 and n 5 n(n 2 1), as before. Specifically,
we obtain the expression for the Gauss–Lobatto weight
function,

w(x) 5 2n@HnPn21 F1 1
c2F 2

n F1
2

1
x

3n
F

1
(1 1 3x2 2 Dsnc2)

12n2 F 2 (A.1.20)

1
x(1 1 x2 2 Jhnc2

5n3 F 3 1 ???GGJ2

,

where F 5 P9n21/Pn21 , c2 5 1 2 x2, and n 5 n(n 2 1).

A.2. Gauss–Radau Quadrature Rule

For the Gauss–Radau quadrature rule, we have

E1

21
F(x) dx 5

2
n2 F(21) 1 On21

i51
w(xi)F(xi),

where the Radau quadrature polynomials are defined as

f 5
Pn21 1 Pn

1 1 x
. (A.2.1)

Here, Pn and Pn21 are the ordinary Legendre polynomials
defined in (22). One can show that

c2f 9 5 nPn21 2 nPn 1 (x 2 1)f (A.2.2)

and that the higher derivatives of f(x) obey the relation

fj 5
(2 j 2 1)x

c2 fj21 1
( j 2 1)2 2 n2

c2 fj22 ,
(A.2.3)

j 5 2, 3, ...,

according to the convention defined in Section 2.2. In par-
ticular, we have

f2 5
3x 2 1

c2 1
1 2 n2

c2 f0 5 a2 1 b2 f0 . (A.2.4)

Given the expression (A.2.3) for the higher derivatives, it
is relatively simple to use (4) and (6) to derive superlinear
converging iterative schemes for Dx. Instead, use (13)
and write

Dx 5 2c2 Oy
j51

dj

j ! Sf0

c2Dj

, (A.2.5)
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where c2 5 1 2 x2. From (14), we obtain the following
relations for the dj’s in (A.2.5).

d1 5 1

dj11 5 2c2d9j 1 [( j 1 2)x 2 j]dj
(A.2.6)

1 j( j 2 1)(1 2 n2)c2dj21,

j 5 1, 2, ....

In particular,

d1 5 1

d2 5 (3x 2 1)

d3 5 (13x2 2 10x 1 1) 2 2n2c2

(A.2.7)
d4 5 (73x3 1 93x2 1 27x 1 1) 2 4n2c2(8x 2 3)

d5 5 (501x4 1 572x3 2 258x2 2 408x 2 19)

24n2c2[(21x 2 13)(5x 2 1) 2 6n2c2].

For the Radau weight formula, we write (18) as

w(x) 5 4@F c2

Ï1 2 x
f 9 Oy

j50

dj

j ! Sf0

c2DjG2

, (A.2.8)

where

d0 5 1

dj11 5 2c2d9j 1 As[(2 j 2 3)x 2 (2 j 2 1)]dj
(A.2.9)

1 j( j 2 2)(1 2 n2)c2dj21,

j 5 0, 1, 2, ....

In particular, the first five terms in w(x) of (A.2.8) are

d0 5 1

d1 5
1 2 3x

2

d2 5 Af(x 1 1)2 1 n2c2

d3 5
(x 1 1)2

8
(5x 2 7) 1

n2c2

2
(5x 2 3) (A.2.10)

d4 5
(x 1 1)2

16
(11x 2 13)(3x 2 5)

1
n2c2

2
[(5x 2 7)(3x 2 1) 2 6n2c2]

d5 5 2c2d94 1 As(5x 2 7)d4 1 8(1 2 n2)c2d3 ,

where

d94 5
3(x 1 1)

4
(11x2 2 18x 1 3) 2 n2(30x3 2 39x2 2 8x

1 13 2 12n2c2x)

and c2 5 1 2 x2. Using the properties of the ordinary
Legendre polynomials, the first three terms in w(x) give
the expression

w(x) 5 16(1 2 x)@H(2n 2 1)Pn21 2 (2n 1 1)Pn

1 F(2n 1 1)(2n 2 1)
4

(A.2.11)

1
1

2(1 2 x)G f 2

f 9
1 ???J2

,

where f and f 9 are given according to (A.2.1) and (A.2.2).

A.3. Gauss–Hermite Quadrature Rule

The Gauss–Hermite quadrature rule is defined as

Ey

2y
e2x2

F(x) dx 5 On
i51

w(xi)F(xi ).

The quadrature polynomials are the Hermite polynomials
Hn(x) which obey the relations:

H0(x) 5 1, H1(x) 5 2x

Hn11(x) 5 2xHn(x) 2 2nHn21(x)
(A.3.1)

H 9n(x) 5 2nHn21(x)

H (2)
n (x) 5 2xH 9n(x) 2 2nHn(x).

Using the convention adopted in Section 2.2, we have

f 5 Hn (A.3.2)

f2 5 2x 2 2nf0

5 a2 1 b2 f0 (A.3.3)

and, in general,

fj 5 2xfj21 2 2(n 2 j 1 2) fj22, j 5 2, 3, .... (A.3.4)

Using (A.3.3), the recurrence relation (14) becomes

d1 5 1

dj11 5 2d 9j 1 2 jxdj 2 2 j( j 2 1)ndj21 , (A.3.5)

j 5 1, 2, ...,



and the first five terms of (13), for the Gauss–Hermite
quadrature rule, are

d1 5 1

d2 5 2x

d3 5 2[4x 2 2 (2n 1 1)] (A.3.6)

d4 5 4x(12x 2 2 12n 2 7)

d5 5 4[96x 4 2 4x 2(23 1 36n) 1 24n(n 1 1) 1 7].

Similarly, for the Hermite weight formula, we get from (20)

d0 5 1

dj11 5 2d 9j 1 2( j 2 1)xdj 2 2 j( j 2 2)ndj21, (A.3.7)

j 5 0, 1, 2, ...,

where the dj’s are the coefficients in the series (18). In
particular, the first five terms for the Hermite weight func-
tion (18) are

d0 5 1

d1 5 22x

d2 5 2(n 1 1)

d3 5 4x(n 1 1) 5 2d1 d2
(A.3.8)

d4 5 4(n 1 1)(4x 2 2 3n 2 1)

5 22d2(1 1 3n) 1 4xd3

d5 5 8x(n 1 1)(12x 2 2 17n 2 7)

5 2[x(3d4 2 4d2 ) 2 2d3(1 1 4n)]

and the constant k is equal to 2n11n! Ïf. More specifically,
the Gauss–Hermite formula for the weights has the form

w(x) 5 2n11n! Ïf@HHn11 2
n 1 1

2n
H 2

n

Hn21

2
(n 1 1)x

6n2

H 3
n

H 2
n21 (A.3.9)

2
(n 1 1)(4x2 2 3n 2 1)

48n3

H 4
n

H 3
n21

1 ???J2

.

A.4. Gauss–Laguerre Quadrature Rule

The Gauss–Laguerre quadrature rule is defined as

Ey

0
e2xF(x) dx 5 On

i51
w(xi)F(xi),
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where the quadrature nodes xi are the zeros of the Laguerre
polynomials Ln(x) satisfying the relations

L0(x) 5 1, L1(x) 5 x

(n 1 1)Ln11(x) 5 (2n 1 1 2 x)Ln(x) 2 nLn21(x) (A.4.1)

xL9n(x) 5 nLn(x) 2 nLn21(x)

xL(2)
n (x) 5 (x 2 1)L9n(x) 2 nLn(x).

Using the convention adopted in Section 2.2, we have

f 5 Ln (A.4.2)

f2 5
x 2 1

x
2

n
x

f0

5 a2 1 b2 f0 , (A.4.3)

and, in general,

fj 5
x 1 1 2 j

x
fj21 2

n 1 2 2 j
x

fj22 ,
(A.4.4)

j 5 2, 3, ....

We also write (13) in the form

Dx 5 2 Oy
j51

x
dj

j ! Ff0

xGj

. (A.4.5)

Using (A.4.3), the recurrence relation (14) translates into

d1 5 1

dj11 5 2xd 9j 1 ( jx 2 1)dj 2 j( j 2 1)nxdj21 , (A.4.6)

j 5 1, 2, ....

In particular, the first five coefficients in the series
(A.4.5) are

d1 5 1

d2 5 x 2 1

d3 5 2x 2 2 2x(n 1 2) 1 1

d4 5 6x 3 2 6x 2(2n 1 3) 1 x(10n 1 11) 2 1 (A.4.7)

d5 5 24x 4 2 24x 3(3n 1 4)

1 2x 2(12n2 1 62n 1 49)

2 2x(16n 1 13) 1 1.

The Laguerre weight formula is given by

w(x) 5 1 @Ff 9 Oy
j50

dj

j !
f j

0

Ïx
G2

(A.4.8)
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and, using (20), where dj 5 dj Ïx and (A.4.3), we obtain
the general relation for the dj in (A.4.8),

d0 5 x

dj11 5 2d 9j 1 F( j 2 1) 2
2 j 2 3

2x Gdj

(A.4.9)

2 j( j 2 2)
n
x

dj21 , j 5 0, 1, 2, ....

In particular,

d0 5 x

d1 5
1
2

(1 2 2x)

d2 5
1
2 S 1

2x
1 2n 1 1D

d3 5
1
2 S 1

4x 2 2
n
x

1 2n 1 1G
(A.4.10)

d4 5
1
4 F 1

4x 3 1
(1 2 2n)

x 2 2
[3 1 4n(3n 1 4)]

x

1 4(2n 1 1)

d5 5
1
4 F 1

8x 4 1
(1 2 12n)

4x 3 1
(68n2 1 36n 1 15)

2x 2

2
(68n2 1 84n 1 19)

x
1 12(2n 1 1)G .

Including the first three terms in w(x) gives the Gauss–
Laguerre weight formula

w(x) 5 x@HxL9n 1
1
2

(1 2 2x)Ln

(A.4.11)

1
1
4 S2n 1 1 1

1
2xD L2

n

L9n
1 ???J2

,
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